Lucie Bartošová , Magda Janalíková , Jana Sedlaříková , Alena Opálková Šišková , Katarína Kozics , Michaela Blažíčková , Lucie Matošková , Marek Koutný , Pavel Pleva
{"title":"Antibacterial and biodegradable PLA-based nanofibers loaded with natural phenolic monoterpenes for sustainable biomedical or food application","authors":"Lucie Bartošová , Magda Janalíková , Jana Sedlaříková , Alena Opálková Šišková , Katarína Kozics , Michaela Blažíčková , Lucie Matošková , Marek Koutný , Pavel Pleva","doi":"10.1016/j.nbt.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>Antibacterial biodegradable PLA-based nanofibers loaded with phenolic monoterpenes - thymol, eugenol, carvacrol, and cinnamaldehyde, were prepared by electrospinning. The effect of bioactive molecule on the surface, thermal, morphological, and biological properties has been investigated about the potential pharmaceutical and food processing applications. Fiber diameters ranged from 320 nm for PLA fibrous mat up to 480 nm for PLA membrane with 6 % thymol. All the prepared active nanofibers exhibited hydrophobic surfaces with a slightly decreasing contact angle after the incorporation of phenols. Antimicrobial testing proved a strong efficiency against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>, depending on the specific type and content of the bioactive compound. A significant biofilm formation reduction of bioactive PLA nanofibers was revealed against tested microorganisms. Modification of PLA fibers with active molecules did not significantly affect the biodegradation kinetics in comparison to PLA samples with their absence. This study demonstrates the high potential of newly developed PLA-based/phenol nanofibrous membranes for use as antibacterial and antifouling systems applicable in wound dressings and food packaging.</div></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":"87 ","pages":"Pages 1-11"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871678425000214","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Antibacterial biodegradable PLA-based nanofibers loaded with phenolic monoterpenes - thymol, eugenol, carvacrol, and cinnamaldehyde, were prepared by electrospinning. The effect of bioactive molecule on the surface, thermal, morphological, and biological properties has been investigated about the potential pharmaceutical and food processing applications. Fiber diameters ranged from 320 nm for PLA fibrous mat up to 480 nm for PLA membrane with 6 % thymol. All the prepared active nanofibers exhibited hydrophobic surfaces with a slightly decreasing contact angle after the incorporation of phenols. Antimicrobial testing proved a strong efficiency against Escherichia coli and Staphylococcus aureus, depending on the specific type and content of the bioactive compound. A significant biofilm formation reduction of bioactive PLA nanofibers was revealed against tested microorganisms. Modification of PLA fibers with active molecules did not significantly affect the biodegradation kinetics in comparison to PLA samples with their absence. This study demonstrates the high potential of newly developed PLA-based/phenol nanofibrous membranes for use as antibacterial and antifouling systems applicable in wound dressings and food packaging.
期刊介绍:
New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international.
The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.