In vitro Stability Study of a Panel of Commercial Antibodies at Physiological pH and Temperature as a Guide to Screen Biologic Candidate Molecules for the Potential Risk of In vivo Asparagine Deamidation and Activity Loss.
Richa Garg, Sean McCarthy, Alayna George Thompson, Jiang Zhang, Emily Mattson, Anca Clabbers, Aimalohi Acquah, Jianwen Xu, Chen Zhou, Amr Ali, Dana Filoti, Rajeeva Singh
{"title":"In vitro Stability Study of a Panel of Commercial Antibodies at Physiological pH and Temperature as a Guide to Screen Biologic Candidate Molecules for the Potential Risk of In vivo Asparagine Deamidation and Activity Loss.","authors":"Richa Garg, Sean McCarthy, Alayna George Thompson, Jiang Zhang, Emily Mattson, Anca Clabbers, Aimalohi Acquah, Jianwen Xu, Chen Zhou, Amr Ali, Dana Filoti, Rajeeva Singh","doi":"10.1007/s11095-025-03825-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Biologic drug molecules such as antibodies are exposed to the physiological stress conditions of pH 7.4 and 37°C during their long circulation lifetime in vivo. The stress on biologic molecules in vivo is more severe compared to that under typical storage conditions of low pH formulation and cold temperature. Chemical degradation of critical residues such as asparagine may occur in vivo, leading to potential loss of biological activity. This study describes a physiologically relevant and convenient in vitro PBS stress condition of pH 7.4 and 40°C for pre-clinical stability screening of biologic molecules.</p><p><strong>Methods: </strong>As benchmarks, multiple commercial antibodies (alirocumab, evolocumab, golimumab, ramucirumab, and trastuzumab) were tested in parallel for formulation stability at storage and accelerated temperature conditions and for physiological stability at pH 7.4 and 40°C stress both for 3-4 weeks. The stressed antibodies were monitored for chemical modification and target binding, without requiring affinity purification.</p><p><strong>Results: </strong>The major CDR chemical modifications observed in PBS-stressed commercial antibodies were deamidations of asparagine residues. Although slight decreases in target binding were observed for two antibodies, the affinities overall remained strong after PBS stress.</p><p><strong>Conclusions: </strong>This benchmarking study of commercial antibodies would be useful as a guide to screen discovery-stage biologic molecules both for drug product stability at formulation pH under storage and accelerated temperature conditions and for physiological stability under in vivo-mimicking pH and temperature stress condition.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"353-363"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-025-03825-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Biologic drug molecules such as antibodies are exposed to the physiological stress conditions of pH 7.4 and 37°C during their long circulation lifetime in vivo. The stress on biologic molecules in vivo is more severe compared to that under typical storage conditions of low pH formulation and cold temperature. Chemical degradation of critical residues such as asparagine may occur in vivo, leading to potential loss of biological activity. This study describes a physiologically relevant and convenient in vitro PBS stress condition of pH 7.4 and 40°C for pre-clinical stability screening of biologic molecules.
Methods: As benchmarks, multiple commercial antibodies (alirocumab, evolocumab, golimumab, ramucirumab, and trastuzumab) were tested in parallel for formulation stability at storage and accelerated temperature conditions and for physiological stability at pH 7.4 and 40°C stress both for 3-4 weeks. The stressed antibodies were monitored for chemical modification and target binding, without requiring affinity purification.
Results: The major CDR chemical modifications observed in PBS-stressed commercial antibodies were deamidations of asparagine residues. Although slight decreases in target binding were observed for two antibodies, the affinities overall remained strong after PBS stress.
Conclusions: This benchmarking study of commercial antibodies would be useful as a guide to screen discovery-stage biologic molecules both for drug product stability at formulation pH under storage and accelerated temperature conditions and for physiological stability under in vivo-mimicking pH and temperature stress condition.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.