Linking single-cell transcriptomes with secretion using SEC-seq.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Justin Langerman, Sevana Baghdasarian, Rene Yu-Hong Cheng, Richard G James, Kathrin Plath, Dino Di Carlo
{"title":"Linking single-cell transcriptomes with secretion using SEC-seq.","authors":"Justin Langerman, Sevana Baghdasarian, Rene Yu-Hong Cheng, Richard G James, Kathrin Plath, Dino Di Carlo","doi":"10.1038/s41596-024-01112-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cells secrete numerous proteins and other biomolecules into their surroundings to achieve critical functions-from communicating with other cells to blocking the activity of pathogens. Secretion of cytokines, growth factors, extracellular vesicles and even recombinant biologic drugs defines the therapeutic potency of many cell therapies. However, gene expression states that drive specific secretory phenotypes are largely unknown. We provide a protocol that enables the secretion amount of a target protein encoded (SEC) by oligonucleotide barcodes to be linked with transcriptional sequencing (seq) for thousands of single cells. SEC-seq leverages microscale hydrogel particles called Nanovials to isolate cells and capture their secretions in close proximity, oligonucleotide-labeled antibodies to tag secretions on Nanovials and flow cytometry and single-cell RNA-sequencing (scRNA-seq) platforms for readout. Cells on Nanovials can be sorted on the basis of viability, secretion amount or other surface markers without fixation or permeabilization, and cell- and secretion-containing Nanovials are directly introduced into microfluidic droplets-in-oil emulsions for single-cell barcoding of cell transcriptomes and secretions. We have used SEC-seq to link T cell receptor sequences to the relative amount of associated cytokine secretions, surface marker gene expression with a highly secreting and potential regenerative population of mesenchymal stromal cells and the transcriptome with high immunoglobulin secretion from plasma cells. Nanovial modification and cell loading takes <4 h, and once the desired incubation time is over, staining, cell sorting and emulsion generation for scRNA-seq can also be completed in <4 h. Compared to related techniques that link secretions to a cell's surface, SEC-seq provides a general solution across any secretion target because of the ease with which biotinylated Nanovials can be modified. By linking gene expression and secretory strength, SEC-seq can expand our understanding of cell secretion, how it is regulated and how it can be engineered to make better therapies.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01112-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cells secrete numerous proteins and other biomolecules into their surroundings to achieve critical functions-from communicating with other cells to blocking the activity of pathogens. Secretion of cytokines, growth factors, extracellular vesicles and even recombinant biologic drugs defines the therapeutic potency of many cell therapies. However, gene expression states that drive specific secretory phenotypes are largely unknown. We provide a protocol that enables the secretion amount of a target protein encoded (SEC) by oligonucleotide barcodes to be linked with transcriptional sequencing (seq) for thousands of single cells. SEC-seq leverages microscale hydrogel particles called Nanovials to isolate cells and capture their secretions in close proximity, oligonucleotide-labeled antibodies to tag secretions on Nanovials and flow cytometry and single-cell RNA-sequencing (scRNA-seq) platforms for readout. Cells on Nanovials can be sorted on the basis of viability, secretion amount or other surface markers without fixation or permeabilization, and cell- and secretion-containing Nanovials are directly introduced into microfluidic droplets-in-oil emulsions for single-cell barcoding of cell transcriptomes and secretions. We have used SEC-seq to link T cell receptor sequences to the relative amount of associated cytokine secretions, surface marker gene expression with a highly secreting and potential regenerative population of mesenchymal stromal cells and the transcriptome with high immunoglobulin secretion from plasma cells. Nanovial modification and cell loading takes <4 h, and once the desired incubation time is over, staining, cell sorting and emulsion generation for scRNA-seq can also be completed in <4 h. Compared to related techniques that link secretions to a cell's surface, SEC-seq provides a general solution across any secretion target because of the ease with which biotinylated Nanovials can be modified. By linking gene expression and secretory strength, SEC-seq can expand our understanding of cell secretion, how it is regulated and how it can be engineered to make better therapies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信