The Breast Cancer Classifier refines molecular breast cancer classification to delineate the HER2-low subtype.

IF 7.6 2区 医学 Q1 ONCOLOGY
Polina Turova, Vladimir Kushnarev, Oleg Baranov, Anna Butusova, Sofia Menshikova, Sheila T Yong, Anna Nadiryan, Zoia Antysheva, Svetlana Khorkova, Mariia V Guryleva, Alexander Bagaev, Jochen K Lennerz, Konstantin Chernyshov, Nikita Kotlov
{"title":"The Breast Cancer Classifier refines molecular breast cancer classification to delineate the HER2-low subtype.","authors":"Polina Turova, Vladimir Kushnarev, Oleg Baranov, Anna Butusova, Sofia Menshikova, Sheila T Yong, Anna Nadiryan, Zoia Antysheva, Svetlana Khorkova, Mariia V Guryleva, Alexander Bagaev, Jochen K Lennerz, Konstantin Chernyshov, Nikita Kotlov","doi":"10.1038/s41523-025-00723-0","DOIUrl":null,"url":null,"abstract":"<p><p>Current breast cancer classification methods, particularly immunohistochemistry and PAM50, face challenges in accurately characterizing the HER2-low subtype, a therapeutically relevant entity with distinct biological features. This notable gap can lead to misclassification, resulting in inappropriate treatment decisions and suboptimal patient outcomes. Leveraging RNA-seq and machine-learning algorithms, we developed the Breast Cancer Classifier (BCC), a unique transcriptomic classifier for more precise breast cancer subtyping, specifically by delineating and incorporating HER2-low as a distinct subtype. BCC also redefined the PAM50 Normal subtype into other subtypes, disputing its classification as a unique molecular group. Our statistical analysis not only confirmed the reproducibility and accuracy of BCC, but also revealed similarities in prognostic characteristics between the HER2-low and Basal subtypes. Addressing this gap in breast cancer classification is clinically significant because it not only improves treatment stratification, but also uncovers novel molecular and immunohistochemical features associated with the HER2-low and HER2-high subtypes, thereby advancing our understanding of breast cancer heterogeneity and providing guidance in precision oncology.</p>","PeriodicalId":19247,"journal":{"name":"NPJ Breast Cancer","volume":"11 1","pages":"19"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41523-025-00723-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Current breast cancer classification methods, particularly immunohistochemistry and PAM50, face challenges in accurately characterizing the HER2-low subtype, a therapeutically relevant entity with distinct biological features. This notable gap can lead to misclassification, resulting in inappropriate treatment decisions and suboptimal patient outcomes. Leveraging RNA-seq and machine-learning algorithms, we developed the Breast Cancer Classifier (BCC), a unique transcriptomic classifier for more precise breast cancer subtyping, specifically by delineating and incorporating HER2-low as a distinct subtype. BCC also redefined the PAM50 Normal subtype into other subtypes, disputing its classification as a unique molecular group. Our statistical analysis not only confirmed the reproducibility and accuracy of BCC, but also revealed similarities in prognostic characteristics between the HER2-low and Basal subtypes. Addressing this gap in breast cancer classification is clinically significant because it not only improves treatment stratification, but also uncovers novel molecular and immunohistochemical features associated with the HER2-low and HER2-high subtypes, thereby advancing our understanding of breast cancer heterogeneity and providing guidance in precision oncology.

乳腺癌分类器改进了乳腺癌分子分类,以描述her2低亚型。
目前的乳腺癌分类方法,特别是免疫组织化学和PAM50,在准确表征her2低亚型方面面临挑战,her2低亚型是一种具有独特生物学特征的治疗相关实体。这种显著的差距可能导致错误分类,导致不适当的治疗决策和次优的患者结果。利用RNA-seq和机器学习算法,我们开发了乳腺癌分类器(BCC),这是一种独特的转录组分类器,用于更精确的乳腺癌亚型,特别是通过描述和合并HER2-low作为一个独特的亚型。BCC还将PAM50 Normal亚型重新定义为其他亚型,对其作为独特分子群的分类提出了质疑。我们的统计分析不仅证实了BCC的重复性和准确性,而且揭示了her2低亚型和基础亚型之间预后特征的相似性。解决乳腺癌分类中的这一差距具有重要的临床意义,因为它不仅改善了治疗分层,而且还揭示了与her2 -低和her2 -高亚型相关的新的分子和免疫组织化学特征,从而促进了我们对乳腺癌异质性的理解,并为精确肿瘤学提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Breast Cancer
NPJ Breast Cancer Medicine-Pharmacology (medical)
CiteScore
10.10
自引率
1.70%
发文量
122
审稿时长
9 weeks
期刊介绍: npj Breast Cancer publishes original research articles, reviews, brief correspondence, meeting reports, editorial summaries and hypothesis generating observations which could be unexplained or preliminary findings from experiments, novel ideas, or the framing of new questions that need to be solved. Featured topics of the journal include imaging, immunotherapy, molecular classification of disease, mechanism-based therapies largely targeting signal transduction pathways, carcinogenesis including hereditary susceptibility and molecular epidemiology, survivorship issues including long-term toxicities of treatment and secondary neoplasm occurrence, the biophysics of cancer, mechanisms of metastasis and their perturbation, and studies of the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信