The potential application of isoxanthohumol in inhibiting Clostridium perfringens infection by targeting the type IV pili.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zeyu Song, Yanhong Deng, Jichuan Zhang, Zhongmei Wen, Shui Liu, Xuming Deng, Qiaoling Zhang, Qianghua Lv
{"title":"The potential application of isoxanthohumol in inhibiting Clostridium perfringens infection by targeting the type IV pili.","authors":"Zeyu Song, Yanhong Deng, Jichuan Zhang, Zhongmei Wen, Shui Liu, Xuming Deng, Qiaoling Zhang, Qianghua Lv","doi":"10.1186/s12934-025-02644-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Clostridium perfringens (C. perfringens) is an important zoonotic pathogen. The diseases such as necrotic enteritis (NE), enterotoxemia, gas gangrene and food poisoning caused by its infection seriously threaten the lives of both humans and animals. However, under the severe situation of antibiotic resistance, the development of new antibacterial strategies or drugs deserves great attention.</p><p><strong>Results: </strong>In this study, we selected the virulence factor Type IV pili (TFP) of C. perfringens as the target for drug screening. The gliding motility, biofilm formation, cell adhesion and antibacterial activity of the natural compound isoxanthohumol (IXN) against C. perfringens were determined. Transmission electron microscopy (TEM), TFP gene transcription analysis and Western blot were used to detect the expression of PilA pilin. The therapeutic effect of IXN on C. perfringens infection was demonstrated through a mouse gas gangrene model. It was confirmed that IXN inhibits the function of TFP by down-regulating TFP-encoding genes and two-component regulatory genes.</p><p><strong>Conclusions: </strong>In conclusion, our study shows that IXN has the potential to inhibit the function of TFP in C. perfringens and for anti-infection applications.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"45"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02644-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Clostridium perfringens (C. perfringens) is an important zoonotic pathogen. The diseases such as necrotic enteritis (NE), enterotoxemia, gas gangrene and food poisoning caused by its infection seriously threaten the lives of both humans and animals. However, under the severe situation of antibiotic resistance, the development of new antibacterial strategies or drugs deserves great attention.

Results: In this study, we selected the virulence factor Type IV pili (TFP) of C. perfringens as the target for drug screening. The gliding motility, biofilm formation, cell adhesion and antibacterial activity of the natural compound isoxanthohumol (IXN) against C. perfringens were determined. Transmission electron microscopy (TEM), TFP gene transcription analysis and Western blot were used to detect the expression of PilA pilin. The therapeutic effect of IXN on C. perfringens infection was demonstrated through a mouse gas gangrene model. It was confirmed that IXN inhibits the function of TFP by down-regulating TFP-encoding genes and two-component regulatory genes.

Conclusions: In conclusion, our study shows that IXN has the potential to inhibit the function of TFP in C. perfringens and for anti-infection applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信