Endophytic Aspergillus japonicus mediated biosynthesises of magnesium oxide nanoparticles: sustainable dye removal and in silico molecular docking evaluation of their enhanced antibacterial activity.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Reyad M El-Sharkawy, Mohamed Khairy, Magdi E A Zaki, Al-Shaimaa M Al-Tabbakh
{"title":"Endophytic Aspergillus japonicus mediated biosynthesises of magnesium oxide nanoparticles: sustainable dye removal and in silico molecular docking evaluation of their enhanced antibacterial activity.","authors":"Reyad M El-Sharkawy, Mohamed Khairy, Magdi E A Zaki, Al-Shaimaa M Al-Tabbakh","doi":"10.1186/s12934-025-02648-6","DOIUrl":null,"url":null,"abstract":"<p><p>Sustainable biosynthesis of metal oxide nanoparticles using an eco-friendly approach is a growing research area owing to their promising environmental and biomedical applications. This work aims to biosynthesize and characterize magnesium oxide nanoparticles (MgONPS@Aj) for possible application in dye biosorption and antibacterial activity. For the first time, MgONPS@Aj was successfully synthesized by harnessing exometabolites of Aspergillus japonicus. Various parameters were statistically optimized to maximize the production of MgONPS@Aj using Plackett Burman's design and central composite design. The analysis of variance (ANOVA) revealed that pH was the most significant variable, affecting the bioproduction process followed by biomass quantity and Mg<sup>2+</sup> precursor concentration. The suggested model (quadratic) was greatly significant and acceptable due to the nonsignificant lack of fit (15.10), and P-value (0.001). The optimized nanoparticles were characterized using X-ray powder diffraction, Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM), and Scanning electron microscopy. A high biosorption capacity (204.08 mg/g) of reactive black 5 dye was achieved within 40 min using a 5 mg biosorbent dose (MgONPS@Aj), 100 mg/l initial dye concentration, and pH 6.0. The biosorption process followed a pseudo-second-order (R<sup>2</sup> of 0.9842) and Langmuir isotherm (R<sup>2</sup> of 0.9422) models with a dimensionless separation factor (R<sub>L</sub>) of 8 × 10<sup>4</sup>, hinting favorable and effective biosorption of dye molecules. A biosorption capacity of 81.97 mg/g after five successive cycles hints that the nanomaterial is suitable for several time utilization. Biogenic MgONPS@Aj displayed dramatic concentration-dependent antibacterial activity with the largest inhibition zones for P. aeruginosa (24.1 ± 0.8 mm, MIC: 3.125 µg/ml), followed by E. coli (22.3 ± 0.7 mm, MIC 6.25), B. subtilis (14.7 ± 0.4 mm, MIC: 12.5 µg/ml) and S. aureus (19.2 ± 0.6 mm, MIC: 6.25 µg/ml). The antibacterial activity was further interpreted using molecular simulation analysis. The lowest binding affinity was determined between MgONPS@Aj and target bacterial proteins (chloramphenicol acetyltransferase E. coli, and S. aureus MurE). The ligand (MgONPS@Aj) can bind to the active site's residues (Tyr<sup>172</sup> and SER<sup>224</sup>), indicating a possible antibacterial mechanism. This study recommends MgONPS@Aj as an eco-friendly, and reusable alternative to traditional anionic dye sorbents and a uniquely promising candidate for antimicrobial applications.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"44"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02648-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainable biosynthesis of metal oxide nanoparticles using an eco-friendly approach is a growing research area owing to their promising environmental and biomedical applications. This work aims to biosynthesize and characterize magnesium oxide nanoparticles (MgONPS@Aj) for possible application in dye biosorption and antibacterial activity. For the first time, MgONPS@Aj was successfully synthesized by harnessing exometabolites of Aspergillus japonicus. Various parameters were statistically optimized to maximize the production of MgONPS@Aj using Plackett Burman's design and central composite design. The analysis of variance (ANOVA) revealed that pH was the most significant variable, affecting the bioproduction process followed by biomass quantity and Mg2+ precursor concentration. The suggested model (quadratic) was greatly significant and acceptable due to the nonsignificant lack of fit (15.10), and P-value (0.001). The optimized nanoparticles were characterized using X-ray powder diffraction, Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM), and Scanning electron microscopy. A high biosorption capacity (204.08 mg/g) of reactive black 5 dye was achieved within 40 min using a 5 mg biosorbent dose (MgONPS@Aj), 100 mg/l initial dye concentration, and pH 6.0. The biosorption process followed a pseudo-second-order (R2 of 0.9842) and Langmuir isotherm (R2 of 0.9422) models with a dimensionless separation factor (RL) of 8 × 104, hinting favorable and effective biosorption of dye molecules. A biosorption capacity of 81.97 mg/g after five successive cycles hints that the nanomaterial is suitable for several time utilization. Biogenic MgONPS@Aj displayed dramatic concentration-dependent antibacterial activity with the largest inhibition zones for P. aeruginosa (24.1 ± 0.8 mm, MIC: 3.125 µg/ml), followed by E. coli (22.3 ± 0.7 mm, MIC 6.25), B. subtilis (14.7 ± 0.4 mm, MIC: 12.5 µg/ml) and S. aureus (19.2 ± 0.6 mm, MIC: 6.25 µg/ml). The antibacterial activity was further interpreted using molecular simulation analysis. The lowest binding affinity was determined between MgONPS@Aj and target bacterial proteins (chloramphenicol acetyltransferase E. coli, and S. aureus MurE). The ligand (MgONPS@Aj) can bind to the active site's residues (Tyr172 and SER224), indicating a possible antibacterial mechanism. This study recommends MgONPS@Aj as an eco-friendly, and reusable alternative to traditional anionic dye sorbents and a uniquely promising candidate for antimicrobial applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信