Tennis Serve Speed in Relation to Isokinetic Shoulder Strength, Height, and Segmental Body Mass in Junior Players.

IF 2.6 Q1 SPORT SCIENCES
Jan Vacek, Michal Vagner, Jan Malecek, Petr Stastny
{"title":"Tennis Serve Speed in Relation to Isokinetic Shoulder Strength, Height, and Segmental Body Mass in Junior Players.","authors":"Jan Vacek, Michal Vagner, Jan Malecek, Petr Stastny","doi":"10.3390/jfmk10010057","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives:</b> The relationship between the isokinetic maximal strength of internal or external shoulder rotation and serve speed in tennis is well established, yet the influence of segmental mass, height, and high-speed shoulder rotation strength on serve performance in junior players remains unclear. This study aimed to investigate the relationship between concentric or eccentric isokinetic shoulder strength, segmental mass, height, and first-serve speed aimed at the T-target zone. <b>Methods:</b> Fifteen male junior competitive tennis players (mean ± SD: age 15.9 ± 0.9 years; height: 180.1 ± 7.2 cm; body mass: 66.1 ± 5.7 kg) were assessed for maximal isokinetic strength during concentric and eccentric internal and external shoulder rotations. Segmental mass (arm, leg, and trunk) was measured using dual-energy X-ray absorptiometry, and serve speed was recorded using a radar gun. <b>Results:</b> Concentric shoulder rotations at 210°/s demonstrated significant positive correlations with serve speed for both external (ρ = 0.71, <i>p</i> ≤ 0.01) and internal rotation (ρ = 0.61, <i>p</i> ≤ 0.05). Although lean arm mass partially mediated the relationship between shoulder strength and serve speed (indirect effect = 0.502, 95% CI: -0.156 to 1.145), this mediation effect was not statistically significant. Height was moderately correlated with serve speed (ρ = 0.68, <i>p</i> ≤ 0.01) but did not moderate the relationship between shoulder strength and serve speed. <b>Conclusions:</b> Concentric shoulder strength at higher angular velocities and segmental mass contribute to serve speed in junior tennis players. While height provides structural advantages, strength and lean mass play important roles, emphasizing the need for targeted training programs.</p>","PeriodicalId":16052,"journal":{"name":"Journal of Functional Morphology and Kinesiology","volume":"10 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Morphology and Kinesiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jfmk10010057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The relationship between the isokinetic maximal strength of internal or external shoulder rotation and serve speed in tennis is well established, yet the influence of segmental mass, height, and high-speed shoulder rotation strength on serve performance in junior players remains unclear. This study aimed to investigate the relationship between concentric or eccentric isokinetic shoulder strength, segmental mass, height, and first-serve speed aimed at the T-target zone. Methods: Fifteen male junior competitive tennis players (mean ± SD: age 15.9 ± 0.9 years; height: 180.1 ± 7.2 cm; body mass: 66.1 ± 5.7 kg) were assessed for maximal isokinetic strength during concentric and eccentric internal and external shoulder rotations. Segmental mass (arm, leg, and trunk) was measured using dual-energy X-ray absorptiometry, and serve speed was recorded using a radar gun. Results: Concentric shoulder rotations at 210°/s demonstrated significant positive correlations with serve speed for both external (ρ = 0.71, p ≤ 0.01) and internal rotation (ρ = 0.61, p ≤ 0.05). Although lean arm mass partially mediated the relationship between shoulder strength and serve speed (indirect effect = 0.502, 95% CI: -0.156 to 1.145), this mediation effect was not statistically significant. Height was moderately correlated with serve speed (ρ = 0.68, p ≤ 0.01) but did not moderate the relationship between shoulder strength and serve speed. Conclusions: Concentric shoulder strength at higher angular velocities and segmental mass contribute to serve speed in junior tennis players. While height provides structural advantages, strength and lean mass play important roles, emphasizing the need for targeted training programs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Morphology and Kinesiology
Journal of Functional Morphology and Kinesiology Health Professions-Physical Therapy, Sports Therapy and Rehabilitation
CiteScore
4.20
自引率
0.00%
发文量
94
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信