Extracting mechanical quality factor and eliminating feedthrough using harmonics of thermal-piezoresistive micromechanical resonators.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Geer Teng, Chenhao Yang, Aojie Quan, Chengxin Li, Haojie Li, Yuxuan Cheng, Honglong Chang, Michael Kraft, Hemin Zhang
{"title":"Extracting mechanical quality factor and eliminating feedthrough using harmonics of thermal-piezoresistive micromechanical resonators.","authors":"Geer Teng, Chenhao Yang, Aojie Quan, Chengxin Li, Haojie Li, Yuxuan Cheng, Honglong Chang, Michael Kraft, Hemin Zhang","doi":"10.1038/s41378-025-00869-8","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal-actuation and piezoresistive-detection effects have been employed to pump the effective quality factor of MEMS resonators, targeting simple self-oscillation and better sensing performance in the air. However, the ratio of the pumped effective quality factor to the inherent mechanical quality factor, crucial for characterizing the amplification, is hard to obtain. The main difficulty stems from hidden Lorentz peaks caused by feedthrough effects and the pump effect once the current is applied. In this paper, we demonstrated the presence of high-order harmonic components in the output of thermal-piezoresistive resonators when the oscillation amplitude is sufficiently large. By utilizing second-order harmonics, we achieved the improvement in signal-to-bias ratio of, 20.85 dB compared to that without feedthrough cancellation and 9.67 dB compared to that using a de-embedded method when the bias current is 6.20 mA. Furthermore, the inherent mechanical quality factor is extracted at a low current of 1.8 mA with a value of 5800 using the second-order harmonics, and a nearly two orders of magnitude enhancement in Q factor can be obtained before entering the self-oscillation regime. An amplitude bias instability as good as 55 ppm and a frequency bias instability as good as 10 ppb are realized in the nonlinear operation regime with a pumped effective quality factor of 576k. The paper contributes to the fundamental understanding of the Q pump effect together with harmonic analysis of the thermal-piezoresistive resonators and also pushes forward the development of low-power consumption self-oscillation resonant sensors.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"30"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842816/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00869-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal-actuation and piezoresistive-detection effects have been employed to pump the effective quality factor of MEMS resonators, targeting simple self-oscillation and better sensing performance in the air. However, the ratio of the pumped effective quality factor to the inherent mechanical quality factor, crucial for characterizing the amplification, is hard to obtain. The main difficulty stems from hidden Lorentz peaks caused by feedthrough effects and the pump effect once the current is applied. In this paper, we demonstrated the presence of high-order harmonic components in the output of thermal-piezoresistive resonators when the oscillation amplitude is sufficiently large. By utilizing second-order harmonics, we achieved the improvement in signal-to-bias ratio of, 20.85 dB compared to that without feedthrough cancellation and 9.67 dB compared to that using a de-embedded method when the bias current is 6.20 mA. Furthermore, the inherent mechanical quality factor is extracted at a low current of 1.8 mA with a value of 5800 using the second-order harmonics, and a nearly two orders of magnitude enhancement in Q factor can be obtained before entering the self-oscillation regime. An amplitude bias instability as good as 55 ppm and a frequency bias instability as good as 10 ppb are realized in the nonlinear operation regime with a pumped effective quality factor of 576k. The paper contributes to the fundamental understanding of the Q pump effect together with harmonic analysis of the thermal-piezoresistive resonators and also pushes forward the development of low-power consumption self-oscillation resonant sensors.

利用热压阻式微机械谐振器的谐波提取机械品质因子并消除馈通。
利用热致动和压阻检测效应来提高MEMS谐振器的有效质量因子,以实现简单的自振荡和更好的空气传感性能。然而,泵送的有效质量因子与固有机械质量因子的比值是表征放大的关键,很难得到。主要的困难来自于由于馈通效应和一旦施加电流后的泵浦效应而产生的隐藏洛伦兹峰。在本文中,我们证明了当振荡幅度足够大时,热压阻谐振器输出中存在高阶谐波分量。当偏置电流为6.20 mA时,我们利用二阶谐波实现了与无馈通抵消相比信偏比提高20.85 dB,与采用去嵌入方法相比提高9.67 dB。在低电流为1.8 mA、5800的情况下,利用二阶谐波提取固有机械品质因子,在进入自振荡状态之前,Q因子提高了近2个数量级。在泵浦有效质量因子为576k的非线性运行状态下,实现了高达55ppm的振幅偏稳和10ppb的频率偏稳。本文有助于对Q泵效应的基本认识和热压阻谐振器的谐波分析,并推动低功耗自振荡谐振传感器的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信