Comparison of artificial intelligence and logistic regression models for mortality prediction in acute respiratory distress syndrome: a systematic review and meta-analysis.

IF 2.8 Q2 CRITICAL CARE MEDICINE
Yang He, Ning Liu, Jie Yang, Yucai Hong, Hongying Ni, Zhongheng Zhang
{"title":"Comparison of artificial intelligence and logistic regression models for mortality prediction in acute respiratory distress syndrome: a systematic review and meta-analysis.","authors":"Yang He, Ning Liu, Jie Yang, Yucai Hong, Hongying Ni, Zhongheng Zhang","doi":"10.1186/s40635-024-00706-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The application of artificial intelligence (AI) in predicting the mortality of acute respiratory distress syndrome (ARDS) has garnered significant attention. However, there is still a lack of evidence-based support for its specific diagnostic performance. Thus, this systematic review and meta-analysis was conducted to evaluate the effectiveness of AI algorithms in predicting ARDS mortality.</p><p><strong>Method: </strong>We conducted a comprehensive electronic search across Web of Science, Embase, PubMed, Scopus, and EBSCO databases up to April 28, 2024. The QUADAS-2 tool was used to assess the risk of bias in the included articles. A bivariate mixed-effects model was applied for the meta-analysis. Sensitivity analysis, meta-regression analysis, and tests for heterogeneity were also performed.</p><p><strong>Results: </strong>Eight studies were included in the analysis. The sensitivity, specificity, and summarized receiver operating characteristic (SROC) of the AI-based model in the validation set were 0.89 (95% CI 0.79-0.95), 0.72 (95% CI 0.65-0.78), and 0.84 (95% CI 0.80-0.87), respectively. For the logistic regression (LR) model, the sensitivity, specificity, and SROC were 0.78 (95% CI 0.74-0.82), 0.68 (95% CI 0.60-0.76), and 0.81 (95% CI 0.77-0.84). The AI model demonstrated superior predictive accuracy compared to the LR model. Notably, the predictive model performed better in patients with moderate to severe ARDS (SAUC: 0.84 [95% CI 0.80-0.87] vs. 0.81 [95% CI 0.77-0.84]).</p><p><strong>Conclusion: </strong>The AI algorithms showed superior performance in predicting the mortality of ARDS patients and demonstrated strong potential for clinical application. Additionally, we found that for ARDS, a highly heterogeneous condition, the accuracy of the model is influenced by the severity of the disease.</p>","PeriodicalId":13750,"journal":{"name":"Intensive Care Medicine Experimental","volume":"13 1","pages":"23"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intensive Care Medicine Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40635-024-00706-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The application of artificial intelligence (AI) in predicting the mortality of acute respiratory distress syndrome (ARDS) has garnered significant attention. However, there is still a lack of evidence-based support for its specific diagnostic performance. Thus, this systematic review and meta-analysis was conducted to evaluate the effectiveness of AI algorithms in predicting ARDS mortality.

Method: We conducted a comprehensive electronic search across Web of Science, Embase, PubMed, Scopus, and EBSCO databases up to April 28, 2024. The QUADAS-2 tool was used to assess the risk of bias in the included articles. A bivariate mixed-effects model was applied for the meta-analysis. Sensitivity analysis, meta-regression analysis, and tests for heterogeneity were also performed.

Results: Eight studies were included in the analysis. The sensitivity, specificity, and summarized receiver operating characteristic (SROC) of the AI-based model in the validation set were 0.89 (95% CI 0.79-0.95), 0.72 (95% CI 0.65-0.78), and 0.84 (95% CI 0.80-0.87), respectively. For the logistic regression (LR) model, the sensitivity, specificity, and SROC were 0.78 (95% CI 0.74-0.82), 0.68 (95% CI 0.60-0.76), and 0.81 (95% CI 0.77-0.84). The AI model demonstrated superior predictive accuracy compared to the LR model. Notably, the predictive model performed better in patients with moderate to severe ARDS (SAUC: 0.84 [95% CI 0.80-0.87] vs. 0.81 [95% CI 0.77-0.84]).

Conclusion: The AI algorithms showed superior performance in predicting the mortality of ARDS patients and demonstrated strong potential for clinical application. Additionally, we found that for ARDS, a highly heterogeneous condition, the accuracy of the model is influenced by the severity of the disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Intensive Care Medicine Experimental
Intensive Care Medicine Experimental CRITICAL CARE MEDICINE-
CiteScore
5.10
自引率
2.90%
发文量
48
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信