Effects of Step Length and Stride Variation During Forward Lunges on Lower-Extremity Muscle Activity.

IF 2.6 Q1 SPORT SCIENCES
Rafael F Escamilla, Irwin S Thompson, Robert Asuncion, Jacqueline Bravo, Tiffany Chang, Taylor Fournier, Hannah Garcia, Emily Hockenbery, Kyle Nagasawa, Joan Ozor, Hannah Snoeberger, Kevin E Wilk, Mario Bizzini
{"title":"Effects of Step Length and Stride Variation During Forward Lunges on Lower-Extremity Muscle Activity.","authors":"Rafael F Escamilla, Irwin S Thompson, Robert Asuncion, Jacqueline Bravo, Tiffany Chang, Taylor Fournier, Hannah Garcia, Emily Hockenbery, Kyle Nagasawa, Joan Ozor, Hannah Snoeberger, Kevin E Wilk, Mario Bizzini","doi":"10.3390/jfmk10010042","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The forward lunge is a closed-chain weight-bearing multi-joint exercise simulating the activities of daily living, such as walking or stair climbing, which mainly activates hip, knee, and ankle musculature and is also used by athletes and other individuals to train lower-extremity musculature.</p><p><strong>Objectives: </strong>The purpose of this study is to compare lower-extremity muscle recruitment patterns between stride and step length variations in forward lunges.</p><p><strong>Methods: </strong>Twenty participants had a mean (±SD) age, mass, and height of 26 ± 6 y, 79 ± 8 kg, and 176 ± 7 cm, respectively, for males, and 27 ± 4 y, 62 ± 6 kg, and 161 ± 7 cm, respectively, for females. All participants used their 12-repetition maximum weight while performing a short step and long step forward lunge with a stride (striding forward and pushing back to the starting position) and without a stride (lunging up and down with feet stationary). During each lunge variation, surface electromyography (EMG) data were collected from the quadriceps, hamstrings, gastrocnemius, hip adductors, gluteus maximus, and gluteus medius muscles, and then normalized as a percent of each muscle's maximum voluntary isometric contraction. A repeated measures two-way analysis of variance was employed (<i>p</i> < 0.01), with step length and stride comprising the two factors.</p><p><strong>Results: </strong>The following had no significant interactions: (1) quadriceps, hamstrings, gastrocnemius, hip adductor, and gluteus maximus EMG activities were significantly greater in lunges with a long step compared to lunges with a short step; and (2) gluteus maximus and gluteus medius EMG activities were significantly greater in lunges with a stride compared to lunges without a stride. The following had significant interactions: (1) gluteus medius EMG activities were significantly greater in lunges with a long step with and without a stride compared to lunges with a short step with and without a stride; (2) quadriceps EMG activities were generally significantly greater in lunges with long and short steps with a stride compared to lunges with long and short steps without a stride, in lunges with a long step with a stride compared to lunges with a short step with a stride, and in lunges with a short step without a stride compared to lunges with a long step without a stride; (3) hamstring and hip adductor EMG activities were significantly greater in lunges with a long step with a stride compared to lunges with a long step without a stride, and in lunges with a long step with and without a stride compared to lunges with a short step with and without a stride; and (4) gastrocnemius EMG activities were significantly greater in lunges with a long step with and without a stride compared to lunges with a short step with and without a stride.</p><p><strong>Conclusions: </strong>Lower-extremity muscle activity is generally greater in forward lunges with a long step compared to a short step, and greater in lunges with a stride compared to without a stride. During the externally loaded forward lunge, high to very high muscle activity occurs in the quadriceps, gluteus maximus, and gluteus medius, thus enhancing muscle hypertrophy and strength in these muscles, while moderate muscle activity occurs in the hamstrings, gastrocnemius, and adductor longus.</p>","PeriodicalId":16052,"journal":{"name":"Journal of Functional Morphology and Kinesiology","volume":"10 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843896/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Morphology and Kinesiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jfmk10010042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The forward lunge is a closed-chain weight-bearing multi-joint exercise simulating the activities of daily living, such as walking or stair climbing, which mainly activates hip, knee, and ankle musculature and is also used by athletes and other individuals to train lower-extremity musculature.

Objectives: The purpose of this study is to compare lower-extremity muscle recruitment patterns between stride and step length variations in forward lunges.

Methods: Twenty participants had a mean (±SD) age, mass, and height of 26 ± 6 y, 79 ± 8 kg, and 176 ± 7 cm, respectively, for males, and 27 ± 4 y, 62 ± 6 kg, and 161 ± 7 cm, respectively, for females. All participants used their 12-repetition maximum weight while performing a short step and long step forward lunge with a stride (striding forward and pushing back to the starting position) and without a stride (lunging up and down with feet stationary). During each lunge variation, surface electromyography (EMG) data were collected from the quadriceps, hamstrings, gastrocnemius, hip adductors, gluteus maximus, and gluteus medius muscles, and then normalized as a percent of each muscle's maximum voluntary isometric contraction. A repeated measures two-way analysis of variance was employed (p < 0.01), with step length and stride comprising the two factors.

Results: The following had no significant interactions: (1) quadriceps, hamstrings, gastrocnemius, hip adductor, and gluteus maximus EMG activities were significantly greater in lunges with a long step compared to lunges with a short step; and (2) gluteus maximus and gluteus medius EMG activities were significantly greater in lunges with a stride compared to lunges without a stride. The following had significant interactions: (1) gluteus medius EMG activities were significantly greater in lunges with a long step with and without a stride compared to lunges with a short step with and without a stride; (2) quadriceps EMG activities were generally significantly greater in lunges with long and short steps with a stride compared to lunges with long and short steps without a stride, in lunges with a long step with a stride compared to lunges with a short step with a stride, and in lunges with a short step without a stride compared to lunges with a long step without a stride; (3) hamstring and hip adductor EMG activities were significantly greater in lunges with a long step with a stride compared to lunges with a long step without a stride, and in lunges with a long step with and without a stride compared to lunges with a short step with and without a stride; and (4) gastrocnemius EMG activities were significantly greater in lunges with a long step with and without a stride compared to lunges with a short step with and without a stride.

Conclusions: Lower-extremity muscle activity is generally greater in forward lunges with a long step compared to a short step, and greater in lunges with a stride compared to without a stride. During the externally loaded forward lunge, high to very high muscle activity occurs in the quadriceps, gluteus maximus, and gluteus medius, thus enhancing muscle hypertrophy and strength in these muscles, while moderate muscle activity occurs in the hamstrings, gastrocnemius, and adductor longus.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Morphology and Kinesiology
Journal of Functional Morphology and Kinesiology Health Professions-Physical Therapy, Sports Therapy and Rehabilitation
CiteScore
4.20
自引率
0.00%
发文量
94
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信