Sandra Tobón-Cornejo, Monica Sanchez-Tapia, Rocio Guizar-Heredia, Laura Velázquez Villegas, Lilia G Noriega, Janette Furuzawa-Carballeda, Rogelio Hernández-Pando, Natalia Vázquez-Manjarrez, Omar Granados-Portillo, Adriana López-Barradas, Rosa Rebollar-Vega, Otoniel Maya, Aaron W Miller, Aurora Serralde, Martha Guevara-Cruz, Nimbe Torres, Armando R Tovar
{"title":"Increased dietary protein stimulates amino acid catabolism via the gut microbiota and secondary bile acid production.","authors":"Sandra Tobón-Cornejo, Monica Sanchez-Tapia, Rocio Guizar-Heredia, Laura Velázquez Villegas, Lilia G Noriega, Janette Furuzawa-Carballeda, Rogelio Hernández-Pando, Natalia Vázquez-Manjarrez, Omar Granados-Portillo, Adriana López-Barradas, Rosa Rebollar-Vega, Otoniel Maya, Aaron W Miller, Aurora Serralde, Martha Guevara-Cruz, Nimbe Torres, Armando R Tovar","doi":"10.1080/19490976.2025.2465896","DOIUrl":null,"url":null,"abstract":"<p><p>Excess amino acids from a protein-rich diet are mainly catabolized in the liver. However, it is still unclear to what extent the gut microbiota may be involved in the mechanisms governing this catabolism. Therefore, the aim of this study was to investigate whether consumption of different dietary protein concentrations induces changes in the taxonomy of the gut microbiota, which may contribute to the regulation of hepatic amino acid catabolism. Consumption of a high-protein diet caused overexpression of HIF-1α in the colon and increase in mitochondrial activity, creating a more anaerobic environment that was associated with changes in the taxonomy of the gut microbiota promoting an increase in the synthesis of secondary bile acids, increased secretion of pancreatic glucagon. This effect was demonstrated in pancreatic islets, where secondary bile acids stimulated the expression of the PC2 enzyme that promotes glucagon formation. The increase in circulating glucagon was associated with an induction of the expression of hepatic amino acid-degrading enzymes, an effect attenuated by antibiotics. Thus, high protein intake in mice and humans induced the increase of different species in the gut microbiota with the capacity to produce secondary bile acids leading to an increase in secondary bile acids and glucagon levels, promoting amino acid catabolism.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2465896"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2025.2465896","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Excess amino acids from a protein-rich diet are mainly catabolized in the liver. However, it is still unclear to what extent the gut microbiota may be involved in the mechanisms governing this catabolism. Therefore, the aim of this study was to investigate whether consumption of different dietary protein concentrations induces changes in the taxonomy of the gut microbiota, which may contribute to the regulation of hepatic amino acid catabolism. Consumption of a high-protein diet caused overexpression of HIF-1α in the colon and increase in mitochondrial activity, creating a more anaerobic environment that was associated with changes in the taxonomy of the gut microbiota promoting an increase in the synthesis of secondary bile acids, increased secretion of pancreatic glucagon. This effect was demonstrated in pancreatic islets, where secondary bile acids stimulated the expression of the PC2 enzyme that promotes glucagon formation. The increase in circulating glucagon was associated with an induction of the expression of hepatic amino acid-degrading enzymes, an effect attenuated by antibiotics. Thus, high protein intake in mice and humans induced the increase of different species in the gut microbiota with the capacity to produce secondary bile acids leading to an increase in secondary bile acids and glucagon levels, promoting amino acid catabolism.
期刊介绍:
The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more.
Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.