Developing a semi-automated technique of surface water quality analysis using GEE and machine learning: A case study for Sundarbans.

IF 3.4 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Heliyon Pub Date : 2025-02-01 eCollection Date: 2025-02-15 DOI:10.1016/j.heliyon.2025.e42404
Sheikh Fahim Faysal Sowrav, Sujit Kumar Debsarma, Mohan Kumar Das, Khan Mohammad Ibtehal, Mahfujur Rahman, Noshin Tabassum Hridita, Atika Afia Broty, Muhammad Sajid Anam Hoque
{"title":"Developing a semi-automated technique of surface water quality analysis using GEE and machine learning: A case study for Sundarbans.","authors":"Sheikh Fahim Faysal Sowrav, Sujit Kumar Debsarma, Mohan Kumar Das, Khan Mohammad Ibtehal, Mahfujur Rahman, Noshin Tabassum Hridita, Atika Afia Broty, Muhammad Sajid Anam Hoque","doi":"10.1016/j.heliyon.2025.e42404","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a semi-automated approach for assessing water quality in the Sundarbans, a critical and vulnerable ecosystem, using machine learning (ML) models integrated with field and remotely-sensed data. Key water quality parameters-Sea Surface Temperature (SST), Total Suspended Solids (TSS), Turbidity, Salinity, and pH-were predicted through ML algorithms and interpolated using the Empirical Bayesian Kriging (EBK) model in ArcGIS Pro. The predictive framework leverages Google Earth Engine (GEE) and AutoML, utilizing deep learning libraries to create dynamic, adaptive models that enhance prediction accuracy. Comparative analyses showed that ML-based models effectively captured spatial and temporal variations, aligning closely with field measurements. This integration provides a more efficient alternative to traditional methods, which are resource-intensive and less practical for large-scale, remote areas. Our findings demonstrate that this semi-automated technique is a valuable tool for continuous water quality monitoring, particularly in ecologically sensitive areas with limited accessibility. The approach also offers significant applications for climate resilience and policy-making, as it enables timely identification of deteriorating water quality trends that may impact biodiversity and ecosystem health. However, the study acknowledges limitations, including the variability in data availability and the inherent uncertainties in ML predictions for dynamic water systems. Overall, this research contributes to the advancement of water quality monitoring techniques, supporting sustainable environmental management practices and the resilience of the Sundarbans against emerging climate challenges.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":"11 3","pages":"e42404"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840191/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2025.e42404","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a semi-automated approach for assessing water quality in the Sundarbans, a critical and vulnerable ecosystem, using machine learning (ML) models integrated with field and remotely-sensed data. Key water quality parameters-Sea Surface Temperature (SST), Total Suspended Solids (TSS), Turbidity, Salinity, and pH-were predicted through ML algorithms and interpolated using the Empirical Bayesian Kriging (EBK) model in ArcGIS Pro. The predictive framework leverages Google Earth Engine (GEE) and AutoML, utilizing deep learning libraries to create dynamic, adaptive models that enhance prediction accuracy. Comparative analyses showed that ML-based models effectively captured spatial and temporal variations, aligning closely with field measurements. This integration provides a more efficient alternative to traditional methods, which are resource-intensive and less practical for large-scale, remote areas. Our findings demonstrate that this semi-automated technique is a valuable tool for continuous water quality monitoring, particularly in ecologically sensitive areas with limited accessibility. The approach also offers significant applications for climate resilience and policy-making, as it enables timely identification of deteriorating water quality trends that may impact biodiversity and ecosystem health. However, the study acknowledges limitations, including the variability in data availability and the inherent uncertainties in ML predictions for dynamic water systems. Overall, this research contributes to the advancement of water quality monitoring techniques, supporting sustainable environmental management practices and the resilience of the Sundarbans against emerging climate challenges.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Heliyon
Heliyon MULTIDISCIPLINARY SCIENCES-
CiteScore
4.50
自引率
2.50%
发文量
2793
期刊介绍: Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信