Adaptive spatial-channel feature fusion and self-calibrated convolution for early maize seedlings counting in UAV images.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2025-02-03 eCollection Date: 2024-01-01 DOI:10.3389/fpls.2024.1496801
Zhenyuan Sun, Zhi Yang, Yimin Ding, Boyan Sun, Saiju Li, Zhen Guo, Lei Zhu
{"title":"Adaptive spatial-channel feature fusion and self-calibrated convolution for early maize seedlings counting in UAV images.","authors":"Zhenyuan Sun, Zhi Yang, Yimin Ding, Boyan Sun, Saiju Li, Zhen Guo, Lei Zhu","doi":"10.3389/fpls.2024.1496801","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate counting of crop plants is essential for agricultural science, particularly for yield forecasting, field management, and experimental studies. Traditional methods are labor-intensive and prone to errors. Unmanned Aerial Vehicle (UAV) technology offers a promising alternative; however, varying UAV altitudes can impact image quality, leading to blurred features and reduced accuracy in early maize seedling counts. To address these challenges, we developed RC-Dino, a deep learning methodology based on DINO, specifically designed to enhance the precision of seedling counts from UAV-acquired images. RC-Dino introduces two innovative components: a novel self-calibrating convolutional layer named RSCconv and an adaptive spatial feature fusion module called ASCFF. The RSCconv layer improves the representation of early maize seedlings compared to non-seedling elements within feature maps by calibrating spatial domain features. The ASCFF module enhances the discriminability of early maize seedlings by adaptively fusing feature maps extracted from different layers of the backbone network. Additionally, transfer learning was employed to integrate pre-trained weights with RSCconv, facilitating faster convergence and improved accuracy. The efficacy of our approach was validated using the Early Maize Seedlings Dataset (EMSD), comprising 1,233 annotated images of early maize seedlings, totaling 83,404 individual annotations. Testing on this dataset demonstrated that RC-Dino outperformed existing models, including DINO, Faster R-CNN, RetinaNet, YOLOX, and Deformable DETR. Specifically, RC-Dino achieved improvements of 16.29% in Average Precision (AP) and 8.19% in Recall compared to the DINO model. Our method also exhibited superior coefficient of determination (R²) values across different datasets for seedling counting. By integrating RSCconv and ASCFF into other detection frameworks such as Faster R-CNN, RetinaNet, and Deformable DETR, we observed enhanced detection and counting accuracy, further validating the effectiveness of our proposed method. These advancements make RC-Dino particularly suitable for accurate early maize seedling counting in the field. The source code for RSCconv and ASCFF is publicly available at https://github.com/collapser-AI/RC-Dino, promoting further research and practical applications.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1496801"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841422/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1496801","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate counting of crop plants is essential for agricultural science, particularly for yield forecasting, field management, and experimental studies. Traditional methods are labor-intensive and prone to errors. Unmanned Aerial Vehicle (UAV) technology offers a promising alternative; however, varying UAV altitudes can impact image quality, leading to blurred features and reduced accuracy in early maize seedling counts. To address these challenges, we developed RC-Dino, a deep learning methodology based on DINO, specifically designed to enhance the precision of seedling counts from UAV-acquired images. RC-Dino introduces two innovative components: a novel self-calibrating convolutional layer named RSCconv and an adaptive spatial feature fusion module called ASCFF. The RSCconv layer improves the representation of early maize seedlings compared to non-seedling elements within feature maps by calibrating spatial domain features. The ASCFF module enhances the discriminability of early maize seedlings by adaptively fusing feature maps extracted from different layers of the backbone network. Additionally, transfer learning was employed to integrate pre-trained weights with RSCconv, facilitating faster convergence and improved accuracy. The efficacy of our approach was validated using the Early Maize Seedlings Dataset (EMSD), comprising 1,233 annotated images of early maize seedlings, totaling 83,404 individual annotations. Testing on this dataset demonstrated that RC-Dino outperformed existing models, including DINO, Faster R-CNN, RetinaNet, YOLOX, and Deformable DETR. Specifically, RC-Dino achieved improvements of 16.29% in Average Precision (AP) and 8.19% in Recall compared to the DINO model. Our method also exhibited superior coefficient of determination (R²) values across different datasets for seedling counting. By integrating RSCconv and ASCFF into other detection frameworks such as Faster R-CNN, RetinaNet, and Deformable DETR, we observed enhanced detection and counting accuracy, further validating the effectiveness of our proposed method. These advancements make RC-Dino particularly suitable for accurate early maize seedling counting in the field. The source code for RSCconv and ASCFF is publicly available at https://github.com/collapser-AI/RC-Dino, promoting further research and practical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信