{"title":"The diagnostic and prognostic significance of HOXC13-AS and its molecular regulatory mechanism in human cancer.","authors":"Xiaosi Gu, Xin Hu, Sijia Zhang, Xiaoyu Zhang, Yong Wang, Lianlian Li","doi":"10.3389/fmolb.2025.1540048","DOIUrl":null,"url":null,"abstract":"<p><p>HOXC13 antisense RNA (HOXC13-AS, also known as HOXC-AS5) is a long non-coding RNA that is expressed abnormally in various types of tumors and is closely related to clinical staging, clinical pathological features, and patient survival. HOXC13-AS is involved in the occurrence and development of tumors, affecting cell proliferation, migration, invasion, epithelial-mesenchymal transition, and tumor growth. This review summarizes the clinical significance of HOXC13-AS as a biomarker for human tumor diagnosis and prognosis and outlines the function and molecular regulation mechanism of HOXC13-AS in various types of cancer, including nasopharyngeal carcinoma, breast cancer, oral squamous cell carcinoma, glioma, and cervical cancer. Overall, this review emphasizes the potential of HOXC13-AS as a human tumor predictive biomarker and therapeutic target, paving the way for its clinical application.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1540048"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839424/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1540048","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
HOXC13 antisense RNA (HOXC13-AS, also known as HOXC-AS5) is a long non-coding RNA that is expressed abnormally in various types of tumors and is closely related to clinical staging, clinical pathological features, and patient survival. HOXC13-AS is involved in the occurrence and development of tumors, affecting cell proliferation, migration, invasion, epithelial-mesenchymal transition, and tumor growth. This review summarizes the clinical significance of HOXC13-AS as a biomarker for human tumor diagnosis and prognosis and outlines the function and molecular regulation mechanism of HOXC13-AS in various types of cancer, including nasopharyngeal carcinoma, breast cancer, oral squamous cell carcinoma, glioma, and cervical cancer. Overall, this review emphasizes the potential of HOXC13-AS as a human tumor predictive biomarker and therapeutic target, paving the way for its clinical application.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.