{"title":"Quality identification of <i>Amomi fructus</i> using E-nose, HS-GC-IMS, and intelligent data fusion methods.","authors":"Pan-Pan Zhang, Xin-Jing Gui, Xue-Hua Fan, Han-Li, Hai-Yang Li, Xiao-Peng Li, Feng-Yu Dong, Yan-Li Wang, Jing-Yao, Jun-Han Shi, Rui-Xin Liu","doi":"10.3389/fchem.2025.1544743","DOIUrl":null,"url":null,"abstract":"<p><p><i>Amomi fructus</i> (AF) has been used for both medicinal and food purposes for centuries. However, issues such as source mixing, substandard quality, and product adulteration often affect its efficacy. This study used E-nose (EN) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) to determine and analyze the volatile organic compounds (VOCs) in AF and its counterfeit products. A total of 111 VOCs were detected by HS-GC-IMS, with 101 tentatively identified. Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) identified 47 VOCs as differential markers for distinguishing authentic AF from counterfeits (VIP value >1 and <i>P</i> < 0.05). Based on the E-nose sensor response value and the peak volumes of the 111 VOCs, the unguided Principal Component Analysis (PCA), guided Principal Component Analysis-Discriminant Analysis (PCA-DA), and Partial Least Squares-Discriminant Analysis (PLS-DA) models were established to differentiate AF by authenticity, origin, and provenance. The authenticity identification model achieved 100.00% accuracy after PCA analysis, while the origin identification model and the provenance identification model were 95.65% (HS-GC-IMS: PLS-DA) and 98.18% (HS-GC-IMS: PCA-DA/PLS-DA), respectively. Further data-level fusion of E-nose and HS-GC-IMS significantly improved the accuracy of the origin identification model to 97.96% (PLS-DA), outperforming single-source data modeling. In conclusion, the intelligent data fusion algorithm based on E-nose and HS-GC-IMS data effectively identifies the authenticity, origin, and provenance of AF, providing a rapid and accurate method for quality evaluation.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1544743"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1544743","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Amomi fructus (AF) has been used for both medicinal and food purposes for centuries. However, issues such as source mixing, substandard quality, and product adulteration often affect its efficacy. This study used E-nose (EN) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) to determine and analyze the volatile organic compounds (VOCs) in AF and its counterfeit products. A total of 111 VOCs were detected by HS-GC-IMS, with 101 tentatively identified. Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) identified 47 VOCs as differential markers for distinguishing authentic AF from counterfeits (VIP value >1 and P < 0.05). Based on the E-nose sensor response value and the peak volumes of the 111 VOCs, the unguided Principal Component Analysis (PCA), guided Principal Component Analysis-Discriminant Analysis (PCA-DA), and Partial Least Squares-Discriminant Analysis (PLS-DA) models were established to differentiate AF by authenticity, origin, and provenance. The authenticity identification model achieved 100.00% accuracy after PCA analysis, while the origin identification model and the provenance identification model were 95.65% (HS-GC-IMS: PLS-DA) and 98.18% (HS-GC-IMS: PCA-DA/PLS-DA), respectively. Further data-level fusion of E-nose and HS-GC-IMS significantly improved the accuracy of the origin identification model to 97.96% (PLS-DA), outperforming single-source data modeling. In conclusion, the intelligent data fusion algorithm based on E-nose and HS-GC-IMS data effectively identifies the authenticity, origin, and provenance of AF, providing a rapid and accurate method for quality evaluation.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.