María Torres-López, Pedro F Spiller, Lin Gao, Paula García-Flores, Michael P Murphy, Patricia Ortega-Sáenz, José López-Barneo
{"title":"Acute oxygen sensing by arterial chemoreceptors with a mutant mitochondrial complex I ND6 subunit lacking reverse electron transport.","authors":"María Torres-López, Pedro F Spiller, Lin Gao, Paula García-Flores, Michael P Murphy, Patricia Ortega-Sáenz, José López-Barneo","doi":"10.1002/1873-3468.70017","DOIUrl":null,"url":null,"abstract":"<p><p>Carotid body glomus cells are essential for stimulating breathing in response to hypoxia. They contain specialized mitochondria in which hypoxia induces the accumulation of NADH and H<sub>2</sub>O<sub>2</sub> that modulate membrane ion channel activity. We investigated whether hypoxia induces reverse electron transport (RET) at mitochondrial complex I (MCI). We studied glomus cells from mice with a mutation in ND6, a core protein of MCI, which maintain normal MCI NADH dehydrogenase activity but cannot catalyze RET. The ND6 mutation increases the propensity of MCI to deactivate, and glomus cells with deactivated MCI are insensitive to acute hypoxia. These findings further indicate that MCI function is necessary for glomus cell responsiveness to hypoxia, although MCI RET does not seem to be required for this process.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.70017","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Carotid body glomus cells are essential for stimulating breathing in response to hypoxia. They contain specialized mitochondria in which hypoxia induces the accumulation of NADH and H2O2 that modulate membrane ion channel activity. We investigated whether hypoxia induces reverse electron transport (RET) at mitochondrial complex I (MCI). We studied glomus cells from mice with a mutation in ND6, a core protein of MCI, which maintain normal MCI NADH dehydrogenase activity but cannot catalyze RET. The ND6 mutation increases the propensity of MCI to deactivate, and glomus cells with deactivated MCI are insensitive to acute hypoxia. These findings further indicate that MCI function is necessary for glomus cell responsiveness to hypoxia, although MCI RET does not seem to be required for this process.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.