Dietary Zinc activates the Nrf2 signaling pathway to inhibit pyroptosis and attenuate the lung inflammatory response in COPD.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-04-01 Epub Date: 2025-02-18 DOI:10.1007/s10616-025-00725-7
Yanqiu Huang, Tao Liang, Junfei Liu, Hongyan Yu, Jingna Li, Li Han
{"title":"Dietary Zinc activates the Nrf2 signaling pathway to inhibit pyroptosis and attenuate the lung inflammatory response in COPD.","authors":"Yanqiu Huang, Tao Liang, Junfei Liu, Hongyan Yu, Jingna Li, Li Han","doi":"10.1007/s10616-025-00725-7","DOIUrl":null,"url":null,"abstract":"<p><p>Pyroptosis and inflammation play crucial roles in the development of chronic obstructive pulmonary disease (COPD), and Zinc deficiency is commonly observed in COPD patients. In this study, we aimed to explore the impact of Zinc supplementation on pyroptosis and inflammation in a cigarette smoke (CS)-induced COPD mouse model, as well as the underlying mechanisms. The COPD mouse model was established through CS exposure, and mouse pulmonary epithelial cells (MLE-12) were exposed to cigarette smoke extract (CSE) to further validate the effects of Zinc supplementation. CS exposure resulted in significant alveolar wall damage, increased thickening of the alveolar walls, and elevated levels of interleukin-1β (IL-1β), IL-6, IL-18, and tumor necrosis factor-α (TNF-α) in the lung tissues of COPD mice. However, treatment with dexamethasone (a positive control) or Zinc supplementation alleviated these damages. Furthermore, the expressions of pyroptosis markers, including NLRP3, cleaved-Caspase-1, and GSDMD-N proteins, were upregulated in the lung tissues after CS exposure. Zinc supplementation, however, reversed these changes. Additionally, Zinc supplementation upregulated the protein expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), hemeoxygenase-1 (HO-1), and quinone oxidoreductase-1 (NQO-1), and promoted the ubiquitination of Kelch-like ECH-associated protein 1 (Keap1) mediated by tripartite motif 25 (TRIM25) in the lung tissues of CS-induced mice. Importantly, the Nrf2 signaling inhibitor ML385 abolished the beneficial effects of Zinc in CS-exposed mice. Similar results were observed in MLE-12 lung epithelial cells exposed to CSE. In summary, Zinc supplementation inhibits pyroptosis and attenuates inflammation in COPD mice by activating the Nrf2 pathway.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-025-00725-7.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 2","pages":"62"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00725-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pyroptosis and inflammation play crucial roles in the development of chronic obstructive pulmonary disease (COPD), and Zinc deficiency is commonly observed in COPD patients. In this study, we aimed to explore the impact of Zinc supplementation on pyroptosis and inflammation in a cigarette smoke (CS)-induced COPD mouse model, as well as the underlying mechanisms. The COPD mouse model was established through CS exposure, and mouse pulmonary epithelial cells (MLE-12) were exposed to cigarette smoke extract (CSE) to further validate the effects of Zinc supplementation. CS exposure resulted in significant alveolar wall damage, increased thickening of the alveolar walls, and elevated levels of interleukin-1β (IL-1β), IL-6, IL-18, and tumor necrosis factor-α (TNF-α) in the lung tissues of COPD mice. However, treatment with dexamethasone (a positive control) or Zinc supplementation alleviated these damages. Furthermore, the expressions of pyroptosis markers, including NLRP3, cleaved-Caspase-1, and GSDMD-N proteins, were upregulated in the lung tissues after CS exposure. Zinc supplementation, however, reversed these changes. Additionally, Zinc supplementation upregulated the protein expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), hemeoxygenase-1 (HO-1), and quinone oxidoreductase-1 (NQO-1), and promoted the ubiquitination of Kelch-like ECH-associated protein 1 (Keap1) mediated by tripartite motif 25 (TRIM25) in the lung tissues of CS-induced mice. Importantly, the Nrf2 signaling inhibitor ML385 abolished the beneficial effects of Zinc in CS-exposed mice. Similar results were observed in MLE-12 lung epithelial cells exposed to CSE. In summary, Zinc supplementation inhibits pyroptosis and attenuates inflammation in COPD mice by activating the Nrf2 pathway.

Supplementary information: The online version contains supplementary material available at 10.1007/s10616-025-00725-7.

膳食锌可激活 Nrf2 信号通路,从而抑制慢性阻塞性肺病患者的脓毒症并减轻肺部炎症反应。
焦亡和炎症在慢性阻塞性肺疾病(COPD)的发展中起着至关重要的作用,缺锌在COPD患者中很常见。在这项研究中,我们旨在探讨补充锌对香烟烟雾(CS)诱导的COPD小鼠模型中焦亡和炎症的影响及其潜在机制。通过CS暴露建立COPD小鼠模型,并将小鼠肺上皮细胞(MLE-12)暴露于香烟烟雾提取物(CSE),进一步验证补锌的作用。CS暴露导致COPD小鼠肺泡壁明显损伤,肺泡壁增厚增加,肺组织中白细胞介素-1β (IL-1β)、IL-6、IL-18和肿瘤坏死因子-α (TNF-α)水平升高。然而,地塞米松治疗(阳性对照)或锌补充剂减轻了这些损害。此外,CS暴露后肺组织中NLRP3、cleaved-Caspase-1和GSDMD-N蛋白等焦亡标志物的表达上调。然而,锌补充剂逆转了这些变化。此外,锌的补充上调了核因子-红细胞2相关因子2 (Nrf2)、血红素加氧酶-1 (HO-1)和醌氧化还原酶-1 (NQO-1)的蛋白表达,促进了由TRIM25介导的kelch样ech相关蛋白1 (Keap1)在cs诱导小鼠肺组织中的泛素化。重要的是,Nrf2信号抑制剂ML385在cs暴露小鼠中消除了锌的有益作用。在暴露于CSE的MLE-12肺上皮细胞中观察到类似的结果。综上所述,锌补充剂通过激活Nrf2通路抑制COPD小鼠焦亡并减轻炎症。补充信息:在线版本包含补充资料,可在10.1007/s10616-025-00725-7获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信