Guangyan Yang, Chuanrui Ma, Yuanli Chen, Jiaqing Xiang, Lixing Li, Yanchun Li, Lin Kang, Zhen Liang, Shu Yang
{"title":"HSPA8 dampens SCAP/INSIG split and SREBP activation by reducing PKR-mediated INSIG phosphorylation.","authors":"Guangyan Yang, Chuanrui Ma, Yuanli Chen, Jiaqing Xiang, Lixing Li, Yanchun Li, Lin Kang, Zhen Liang, Shu Yang","doi":"10.1016/j.celrep.2025.115339","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid accumulation in renal tubules is a major determinant of diabetic kidney disease (DKD), and activation of SREBPs plays a central role in this process. Our study aims to explore whether HSPA8, a molecular chaperone, is the master regulator of INSIG/SREBPs function in DKD. Here, we show that tubular epithelial cell (TEC)-specific knockout of HSPA8 upregulates the phosphorylation of INSIG1 and INSIG2, which disrupts the interaction between INSIG proteins and SCAP, leading to SREBP activation. TEC-specific overexpression of HSPA8 restrains these changes. INSIG1/2 can be phosphorylated by protein kinase R (PKR), while HSPA8 recognizes PKR and recruits the E3 ubiquitin ligase to promote PKR ubiquitination and degradation. Under temporary hyperglycemic stimulation, SREBP1 transcriptionally activates HSPA8 expression. Conversely, persistent hyperglycemia reduces HSPA8 levels via promoting NF-κB-mediated transcriptional inhibition of HSPA8. Collectively, these findings indicate that the molecular chaperone HSPA8 serves as a negative feedback regulator of SREBPs, lipogenesis, and DKD development.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115339"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115339","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid accumulation in renal tubules is a major determinant of diabetic kidney disease (DKD), and activation of SREBPs plays a central role in this process. Our study aims to explore whether HSPA8, a molecular chaperone, is the master regulator of INSIG/SREBPs function in DKD. Here, we show that tubular epithelial cell (TEC)-specific knockout of HSPA8 upregulates the phosphorylation of INSIG1 and INSIG2, which disrupts the interaction between INSIG proteins and SCAP, leading to SREBP activation. TEC-specific overexpression of HSPA8 restrains these changes. INSIG1/2 can be phosphorylated by protein kinase R (PKR), while HSPA8 recognizes PKR and recruits the E3 ubiquitin ligase to promote PKR ubiquitination and degradation. Under temporary hyperglycemic stimulation, SREBP1 transcriptionally activates HSPA8 expression. Conversely, persistent hyperglycemia reduces HSPA8 levels via promoting NF-κB-mediated transcriptional inhibition of HSPA8. Collectively, these findings indicate that the molecular chaperone HSPA8 serves as a negative feedback regulator of SREBPs, lipogenesis, and DKD development.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.