Surya Prakash Rao Batta, Marc Rio, Corentin Lebot, Céline Baron-Menguy, Maxence Bodet, Reda Moutaoukil, Robin Le Ruz, Ibtissam Babahnini, Gervaise Loirand, Anne-Clémence Vion
{"title":"ARHGEF18 is a flow-responsive exchange factor controlling endothelial tight junctions and vascular leakage.","authors":"Surya Prakash Rao Batta, Marc Rio, Corentin Lebot, Céline Baron-Menguy, Maxence Bodet, Reda Moutaoukil, Robin Le Ruz, Ibtissam Babahnini, Gervaise Loirand, Anne-Clémence Vion","doi":"10.1016/j.celrep.2025.115288","DOIUrl":null,"url":null,"abstract":"<p><p>The shear stress resulting from blood flow is a major regulator of endothelial cell (EC) biology and morphology. Rho protein-mediated cytoskeleton remodeling is an early and essential step of EC responses to flow. However, how Rho protein signaling is controlled by shear stress remains unclear. Here we demonstrate that phosphorylation, activity, and expression of the Rho nucleotide exchange factor (RhoGEF) ARHGEF18 in ECs are modulated by the magnitude of shear stress. When phosphorylated, ARHGEF18 interacts with tight junctions; participates in EC elongation, alignment, and migration; and allows the maintenance of the endothelial barrier under physiological flow conditions. In mice, ARHGEF18 is involved in tight junction formation, flow response of ECs, and the control of vascular permeability. Together, our results identified ARHGEF18 as the first flow-sensitive RhoGEF in ECs, whose activity is essential for the maintenance of intercellular junctions and the control of vascular permeability in vivo.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115288"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115288","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The shear stress resulting from blood flow is a major regulator of endothelial cell (EC) biology and morphology. Rho protein-mediated cytoskeleton remodeling is an early and essential step of EC responses to flow. However, how Rho protein signaling is controlled by shear stress remains unclear. Here we demonstrate that phosphorylation, activity, and expression of the Rho nucleotide exchange factor (RhoGEF) ARHGEF18 in ECs are modulated by the magnitude of shear stress. When phosphorylated, ARHGEF18 interacts with tight junctions; participates in EC elongation, alignment, and migration; and allows the maintenance of the endothelial barrier under physiological flow conditions. In mice, ARHGEF18 is involved in tight junction formation, flow response of ECs, and the control of vascular permeability. Together, our results identified ARHGEF18 as the first flow-sensitive RhoGEF in ECs, whose activity is essential for the maintenance of intercellular junctions and the control of vascular permeability in vivo.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.