{"title":"The virulence trait and genotype distribution amongst the Pseudomonas aeruginosa clinical strains.","authors":"Xiaohuan Wang, Kaijing Gao, Baishen Pan, Beili Wang, Yuanlin Song, Wei Guo","doi":"10.1186/s12866-025-03754-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pseudomonas aeruginosa is notorious for its complex virulence system and rapid adaptive drug resistance. This study aimed to compare the prevalence and genotype distribution of virulence genes in multidrug-sensitive and multidrug-resistant clinical strains of Pseudomonas aeruginosa. It is possible to better understand the genetic characteristics of Pseudomonas aeruginosa and carry out effective treatment and prevention measures.</p><p><strong>Methods: </strong>The genes phzS, aprA, plcH, toxA, pilA and exoU were detected amongst 184 clinical strains, whose cytotoxicity and biofilm formation ability were evaluated as well. Phenotypic screening for drug susceptibility was conducted by standard antimicrobial susceptibility test and interpreted according to standards established by CLSI.</p><p><strong>Results: </strong>A total of 94 multidrug-sensitive and 90 multidrug-resistant isolates were included in this study. Statistically significant relationship was observed in the frequency of the toxA (p = 0.002) and plcH (p = 0.001) genes between multidrug-resistant and multidrug-sensitive strains. Moreover, thirteen genotypes were observed in multidrug-sensitive strains, and seven of them were included in multidrug-resistant groups. There was statistically significant correlation found between the presence of genotype IV (p = 0.001) and genotype VII (p = 0.001) in two subgroups. Additionally, It was found that genotype III isolates exhibited most obvious cytotoxicity, and multidrug-resistant isolates of genotype III showed the most significant cytotoxicity. Moreover, the strains of strong biofilm-formation accounted for a relatively high proportion in genotype III and VI groups.</p><p><strong>Conclusion: </strong>These virulence genes could form abundant genotype varieties, whose overall number is greater in multi-sensitive strains. In addition, particular genotypes were characteristically distributed and exhibited different cytotoxicity and biofilm-formation abilities.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"82"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-03754-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Pseudomonas aeruginosa is notorious for its complex virulence system and rapid adaptive drug resistance. This study aimed to compare the prevalence and genotype distribution of virulence genes in multidrug-sensitive and multidrug-resistant clinical strains of Pseudomonas aeruginosa. It is possible to better understand the genetic characteristics of Pseudomonas aeruginosa and carry out effective treatment and prevention measures.
Methods: The genes phzS, aprA, plcH, toxA, pilA and exoU were detected amongst 184 clinical strains, whose cytotoxicity and biofilm formation ability were evaluated as well. Phenotypic screening for drug susceptibility was conducted by standard antimicrobial susceptibility test and interpreted according to standards established by CLSI.
Results: A total of 94 multidrug-sensitive and 90 multidrug-resistant isolates were included in this study. Statistically significant relationship was observed in the frequency of the toxA (p = 0.002) and plcH (p = 0.001) genes between multidrug-resistant and multidrug-sensitive strains. Moreover, thirteen genotypes were observed in multidrug-sensitive strains, and seven of them were included in multidrug-resistant groups. There was statistically significant correlation found between the presence of genotype IV (p = 0.001) and genotype VII (p = 0.001) in two subgroups. Additionally, It was found that genotype III isolates exhibited most obvious cytotoxicity, and multidrug-resistant isolates of genotype III showed the most significant cytotoxicity. Moreover, the strains of strong biofilm-formation accounted for a relatively high proportion in genotype III and VI groups.
Conclusion: These virulence genes could form abundant genotype varieties, whose overall number is greater in multi-sensitive strains. In addition, particular genotypes were characteristically distributed and exhibited different cytotoxicity and biofilm-formation abilities.
期刊介绍:
BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.