Light-based multi-material bioprinting of vascularised adipose tissue for breast fatty tissue engineering.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Nina Hedemann, Alexander Thomas, Nils Tribian, Anna-Klara Amler, Sandra Krüger, David Holthaus, Patricia Huebbe, Inken Flörkemeier, Jörg Weimer, Nicolai Maass, Lutz Kloke, Dirk Bauerschlag, Marion Tina van Mackelenbergh
{"title":"Light-based multi-material bioprinting of vascularised adipose tissue for breast fatty tissue engineering.","authors":"Nina Hedemann, Alexander Thomas, Nils Tribian, Anna-Klara Amler, Sandra Krüger, David Holthaus, Patricia Huebbe, Inken Flörkemeier, Jörg Weimer, Nicolai Maass, Lutz Kloke, Dirk Bauerschlag, Marion Tina van Mackelenbergh","doi":"10.1088/1758-5090/adb890","DOIUrl":null,"url":null,"abstract":"<p><p>Reconstructive surgery following breast cancer ablation is a surgical gold standard, but current options comprising autologous fatty tissue transfer and artificial soft tissue implants are inferior. With the advent of powerful biofabrication technologies, researchers for the first time have the tools to engineer life-like tissues with the ultimate goal of clinical application. Here, we apply multi-material stereolithographic bioprinting together with a novel sacrificial biomaterial system to engineer complex fatty tissue constructs. Biomaterials, cellular composition and cultivation conditions of these constructs were designed to enable<i>in vitro</i>creation of vascularised fatty tissue. Cells within the constructs showed an overall good survival (>93%), indicated by live-dead cell staining, over the entire cultivation period of 27 d. Adipose-derived stem cells were successfully differentiated<i>in situ</i>, forming fat vesicles and expressing adipocyte markers PPARγ, FAPB4 and S100B. Additionally, secretion of adipokines leptin and adiponectin into culture supernatants increased significantly. Endothelial cells vascularised the constructs, creating macro- and microvascular structures within the printed channels and extending beyond with culture time. Moreover, cells invaded into the surrounding hydrogel. The engineered fatty tissue constructs could serve as a base to develop patient-specific tissue building blocks with the final goal to achieve an all-natural reconstruction of the breast.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adb890","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reconstructive surgery following breast cancer ablation is a surgical gold standard, but current options comprising autologous fatty tissue transfer and artificial soft tissue implants are inferior. With the advent of powerful biofabrication technologies, researchers for the first time have the tools to engineer life-like tissues with the ultimate goal of clinical application. Here, we apply multi-material stereolithographic bioprinting together with a novel sacrificial biomaterial system to engineer complex fatty tissue constructs. Biomaterials, cellular composition and cultivation conditions of these constructs were designed to enablein vitrocreation of vascularised fatty tissue. Cells within the constructs showed an overall good survival (>93%), indicated by live-dead cell staining, over the entire cultivation period of 27 d. Adipose-derived stem cells were successfully differentiatedin situ, forming fat vesicles and expressing adipocyte markers PPARγ, FAPB4 and S100B. Additionally, secretion of adipokines leptin and adiponectin into culture supernatants increased significantly. Endothelial cells vascularised the constructs, creating macro- and microvascular structures within the printed channels and extending beyond with culture time. Moreover, cells invaded into the surrounding hydrogel. The engineered fatty tissue constructs could serve as a base to develop patient-specific tissue building blocks with the final goal to achieve an all-natural reconstruction of the breast.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信