The efficiency of high-throughput screening (HTS) and in-silico data analysis during medical emergencies: Identification of effective antiviral 3CLpro inhibitors

IF 4.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Debora Zian , Daniela Iaconis , Simone Nenci , Alessandra Crusco , Sanjeevani Tawde , Mariangela Sodano , Rocco Vitalone , Ameya Raje , Martina Palamini , Daniele Carettoni , Angela Molteni , Candida Manelfi , Valerio Tazzari , Andrea Rosario Beccari , Paolo Malune , Stefania Maloccu , Annalaura Paulis , Angela Corona , Salvatore Nieddu , Silvano Coletti , MariaPia Catalani
{"title":"The efficiency of high-throughput screening (HTS) and in-silico data analysis during medical emergencies: Identification of effective antiviral 3CLpro inhibitors","authors":"Debora Zian ,&nbsp;Daniela Iaconis ,&nbsp;Simone Nenci ,&nbsp;Alessandra Crusco ,&nbsp;Sanjeevani Tawde ,&nbsp;Mariangela Sodano ,&nbsp;Rocco Vitalone ,&nbsp;Ameya Raje ,&nbsp;Martina Palamini ,&nbsp;Daniele Carettoni ,&nbsp;Angela Molteni ,&nbsp;Candida Manelfi ,&nbsp;Valerio Tazzari ,&nbsp;Andrea Rosario Beccari ,&nbsp;Paolo Malune ,&nbsp;Stefania Maloccu ,&nbsp;Annalaura Paulis ,&nbsp;Angela Corona ,&nbsp;Salvatore Nieddu ,&nbsp;Silvano Coletti ,&nbsp;MariaPia Catalani","doi":"10.1016/j.antiviral.2025.106119","DOIUrl":null,"url":null,"abstract":"<div><div>The COVID-19 pandemic highlighted the importance of accelerating the drug discovery process. The 3-chymotrypsin-like protease (3CLpro) is a critical enzyme in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral replication process and was quickly identified as a prime target for drug development. This study leverages High-Throughput Screening (HTS) to identify novel 3CLpro inhibitors. We screened a different library of 325,000 compounds, leading to the discovery of two new chemical scaffolds with selective inhibitory activity against 3CLpro. <em>In-silico</em> analysis and further experimental validation, elucidated the binding modes and mechanisms of action, revealing a covalent inhibitor targeting the catalytic pocket and two allosteric inhibitors affecting the monomer/dimer equilibrium of 3CLpro. The identified compounds demonstrated significant antiviral activity in vitro, reducing SARS-CoV-2 replication in VeroE6 and Calu-3 cell lines. This study highlights the potential of combining HTS and computational approaches to accelerate the discovery of effective antiviral agents, suggesting a workflow to support the research and the design of effective therapeutic strategies.</div></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"237 ","pages":"Article 106119"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354225000452","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic highlighted the importance of accelerating the drug discovery process. The 3-chymotrypsin-like protease (3CLpro) is a critical enzyme in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral replication process and was quickly identified as a prime target for drug development. This study leverages High-Throughput Screening (HTS) to identify novel 3CLpro inhibitors. We screened a different library of 325,000 compounds, leading to the discovery of two new chemical scaffolds with selective inhibitory activity against 3CLpro. In-silico analysis and further experimental validation, elucidated the binding modes and mechanisms of action, revealing a covalent inhibitor targeting the catalytic pocket and two allosteric inhibitors affecting the monomer/dimer equilibrium of 3CLpro. The identified compounds demonstrated significant antiviral activity in vitro, reducing SARS-CoV-2 replication in VeroE6 and Calu-3 cell lines. This study highlights the potential of combining HTS and computational approaches to accelerate the discovery of effective antiviral agents, suggesting a workflow to support the research and the design of effective therapeutic strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antiviral research
Antiviral research 医学-病毒学
CiteScore
17.10
自引率
3.90%
发文量
157
审稿时长
34 days
期刊介绍: Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信