Assessment of In Vitro Assays and Quantitative Determination of Selectivity and Modality of Inhibitors Targeting the Cell Cycle Regulating, Oncogenic Cyclin-Dependent Kinases.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiaolu Wei, Guidan Ning, Huitong Ma, Yujiao Yin, Jianchun Ma, Liang Han, Danqi Chen, Zhongfeng Shi
{"title":"Assessment of In Vitro Assays and Quantitative Determination of Selectivity and Modality of Inhibitors Targeting the Cell Cycle Regulating, Oncogenic Cyclin-Dependent Kinases.","authors":"Xiaolu Wei, Guidan Ning, Huitong Ma, Yujiao Yin, Jianchun Ma, Liang Han, Danqi Chen, Zhongfeng Shi","doi":"10.1016/j.abb.2025.110349","DOIUrl":null,"url":null,"abstract":"<p><p>At the heart of cancer pathology lies the dysregulated cell cycle, which is often driven by aberrant activities of the cell cycle regulating, cyclin-dependent kinases (CDKs). Efforts to harness the therapeutic potential of modulating CDK activities have led to the development of inhibitors with tailored CDK selectivity. However, uniformity in the methods used to evaluate CDK inhibitor selectivity has been lacking and consequently, direct comparison and interpretation of selectivity profiles determined under different assay conditions is difficult. Determination of the inhibition modalities crucial to profiling selectivity of a CDK inhibitor requires thorough kinetic analysis carried out under comparable assay conditions. In this study, we employed a streamlined series of in vitro assays for profiling CDK inhibitors wherein intrinsic inhibition constants and cellular binding parameters were measured by using strategically designed enzymatic inhibition and complementary biophysical assays. Our findings demonstrate the effectiveness of this strategy in determining and quantitatively analyzing the selectivity and inhibition modality of a set of representative CDK inhibitors towards the major oncogenic, cell cycle CDKs. In addition, the assay results provide insights into the inhibitor-target interactions that extend beyond potency and selectivity.</p>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110349"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.abb.2025.110349","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

At the heart of cancer pathology lies the dysregulated cell cycle, which is often driven by aberrant activities of the cell cycle regulating, cyclin-dependent kinases (CDKs). Efforts to harness the therapeutic potential of modulating CDK activities have led to the development of inhibitors with tailored CDK selectivity. However, uniformity in the methods used to evaluate CDK inhibitor selectivity has been lacking and consequently, direct comparison and interpretation of selectivity profiles determined under different assay conditions is difficult. Determination of the inhibition modalities crucial to profiling selectivity of a CDK inhibitor requires thorough kinetic analysis carried out under comparable assay conditions. In this study, we employed a streamlined series of in vitro assays for profiling CDK inhibitors wherein intrinsic inhibition constants and cellular binding parameters were measured by using strategically designed enzymatic inhibition and complementary biophysical assays. Our findings demonstrate the effectiveness of this strategy in determining and quantitatively analyzing the selectivity and inhibition modality of a set of representative CDK inhibitors towards the major oncogenic, cell cycle CDKs. In addition, the assay results provide insights into the inhibitor-target interactions that extend beyond potency and selectivity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信