Light-Blocking Nanofiber Membranes Facilitating Physiologically Relevant In Situ Transmigration Assay.

IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dohui Kim, Soojin Yi, Byeong-Ung Park, Seongsu Eom, Sinsung Kang, Dong Sung Kim, Hong Kyun Kim
{"title":"Light-Blocking Nanofiber Membranes Facilitating Physiologically Relevant In Situ Transmigration Assay.","authors":"Dohui Kim, Soojin Yi, Byeong-Ung Park, Seongsu Eom, Sinsung Kang, Dong Sung Kim, Hong Kyun Kim","doi":"10.1021/acsbiomaterials.4c02096","DOIUrl":null,"url":null,"abstract":"<p><p>Nanofiber (NF) membranes have demonstrated considerable potential in cellular transmigration studies due to their resemblance to the biophysical properties of basement membranes, enabling cellular behaviors that closely mimic those observed in vivo. Despite their advantages, conventional NF membranes often encounter issues in transmigration assays due to their transparency, which leads to overlapping fluorescent signals from transmigrated and nontransmigrated cells. This overlap complicates the clear differentiation between these cell populations, making the quantitative evaluation of live-cell transmigration challenging. To address this issue, we developed a light-blocking nanofiber (LB-NF) membrane by incorporating carbon black into polycaprolactone NFs. This LB-NF membrane is designed not only to mimic the biophysical properties of the basement membrane but also to enable in situ analysis of transmigrated cells through its light-blocking properties. Our study demonstrated the effectiveness of the LB-NF membrane in a transmigration assay using human brain cerebral microvascular endothelial cells (HBEC-5i), enabling physiologically relevant cell transmigration while significantly enhancing the accuracy of in situ fluorescence detection. Furthermore, drug testing within a choroidal neovascularization model using the LB-NF membrane underscores its utility and potential impact on pharmaceutical development, particularly for diseases involving abnormal cell transmigration. Therefore, the developed LB-NF membrane represents a valuable tool for the precise assessment of in situ cellular transmigration and holds significant promise for advancing drug screening and therapeutic development.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"1834-1846"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02096","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofiber (NF) membranes have demonstrated considerable potential in cellular transmigration studies due to their resemblance to the biophysical properties of basement membranes, enabling cellular behaviors that closely mimic those observed in vivo. Despite their advantages, conventional NF membranes often encounter issues in transmigration assays due to their transparency, which leads to overlapping fluorescent signals from transmigrated and nontransmigrated cells. This overlap complicates the clear differentiation between these cell populations, making the quantitative evaluation of live-cell transmigration challenging. To address this issue, we developed a light-blocking nanofiber (LB-NF) membrane by incorporating carbon black into polycaprolactone NFs. This LB-NF membrane is designed not only to mimic the biophysical properties of the basement membrane but also to enable in situ analysis of transmigrated cells through its light-blocking properties. Our study demonstrated the effectiveness of the LB-NF membrane in a transmigration assay using human brain cerebral microvascular endothelial cells (HBEC-5i), enabling physiologically relevant cell transmigration while significantly enhancing the accuracy of in situ fluorescence detection. Furthermore, drug testing within a choroidal neovascularization model using the LB-NF membrane underscores its utility and potential impact on pharmaceutical development, particularly for diseases involving abnormal cell transmigration. Therefore, the developed LB-NF membrane represents a valuable tool for the precise assessment of in situ cellular transmigration and holds significant promise for advancing drug screening and therapeutic development.

光阻断纳米纤维膜促进生理相关的原位迁移试验。
纳米纤维(NF)膜在细胞迁移研究中表现出相当大的潜力,因为它们与基底膜的生物物理特性相似,使细胞行为与体内观察到的非常相似。尽管传统的NF膜具有优势,但由于其透明性,在迁移试验中经常遇到问题,这导致来自迁移细胞和非迁移细胞的荧光信号重叠。这种重叠使这些细胞群之间的明确区分复杂化,使活细胞迁移的定量评估具有挑战性。为了解决这个问题,我们将炭黑掺入聚己内酯NFs中,开发了一种阻光纳米纤维(LB-NF)膜。这种LB-NF膜不仅可以模拟基底膜的生物物理特性,还可以通过其光阻特性对迁移细胞进行原位分析。我们的研究证明了LB-NF膜在人类大脑微血管内皮细胞(HBEC-5i)的迁移实验中的有效性,在显著提高原位荧光检测准确性的同时,实现了生理相关的细胞迁移。此外,在使用LB-NF膜的脉络膜新生血管模型中进行的药物测试强调了其在药物开发中的实用性和潜在影响,特别是对于涉及异常细胞转运的疾病。因此,开发的LB-NF膜代表了精确评估原位细胞迁移的有价值的工具,并在推进药物筛选和治疗开发方面具有重要的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信