Transition-Metal Phthalocyanines as Versatile Building Blocks for Molecular Qubits on Surfaces.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-03-06 Epub Date: 2025-02-20 DOI:10.1021/acs.jpca.4c07627
Corina Urdaniz, Saba Taherpour, Jisoo Yu, Jose Reina-Galvez, Christoph Wolf
{"title":"Transition-Metal Phthalocyanines as Versatile Building Blocks for Molecular Qubits on Surfaces.","authors":"Corina Urdaniz, Saba Taherpour, Jisoo Yu, Jose Reina-Galvez, Christoph Wolf","doi":"10.1021/acs.jpca.4c07627","DOIUrl":null,"url":null,"abstract":"<p><p>The search for molecular or colloidal building units capable of autonomously organized configurations has been a long-standing endeavor that has resulted in the development of innovative material categories, such as metal-organic and covalent organic or long-range molecular networks. In particular, the possibility of using molecules on surfaces to create specific architectures, for example, those containing nanostructures of <i>S</i> = 1/2 molecular spin, can enable versatile quantum materials and the exploration of future quantum devices. Transition-metal phthalocyanines are particularly attractive candidates as they are stable molecules that can host spin-bearing transition-metal ions in a planar conjugated ring. Here, we use density functional theory calculations to systematically study electronic and magnetic properties and hyperfine parameters for the whole series of 3<i>d</i> transition-metal atoms. We perform transport simulations of selected qubit candidates to further elucidate their suitability for molecular spin qubits on a surface.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"2173-2181"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c07627","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The search for molecular or colloidal building units capable of autonomously organized configurations has been a long-standing endeavor that has resulted in the development of innovative material categories, such as metal-organic and covalent organic or long-range molecular networks. In particular, the possibility of using molecules on surfaces to create specific architectures, for example, those containing nanostructures of S = 1/2 molecular spin, can enable versatile quantum materials and the exploration of future quantum devices. Transition-metal phthalocyanines are particularly attractive candidates as they are stable molecules that can host spin-bearing transition-metal ions in a planar conjugated ring. Here, we use density functional theory calculations to systematically study electronic and magnetic properties and hyperfine parameters for the whole series of 3d transition-metal atoms. We perform transport simulations of selected qubit candidates to further elucidate their suitability for molecular spin qubits on a surface.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信