Metastable Calcium Phosphate Cluster-Involved Mineralization Process Regulated by a Dual Biomolecule System Toward the Application in Dentinal Tubules Occlusion.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Xiaochen Xu, Nan Luo, Jing Ru, Hua Zeng, Xiaohao Liu, Shuo Tan, Feng Chen, Bing-Qiang Lu, Xi Chen
{"title":"Metastable Calcium Phosphate Cluster-Involved Mineralization Process Regulated by a Dual Biomolecule System Toward the Application in Dentinal Tubules Occlusion.","authors":"Xiaochen Xu, Nan Luo, Jing Ru, Hua Zeng, Xiaohao Liu, Shuo Tan, Feng Chen, Bing-Qiang Lu, Xi Chen","doi":"10.1002/adhm.202405074","DOIUrl":null,"url":null,"abstract":"<p><p>Dentin hypersensitivity caused by the exposure of dentinal tubules is affecting a significant portion of the population. With promising prospects, the biomimetic mineralization materials used in treating dentin hypersensitivity are expected to possess a metastable characteristic, for which they can easily penetrate the tubules and the surrounding tissues, but then occlude them via a transformation of size and phase immediately. Herein, this study develops a metastable calcium phosphate cluster (MCPC)-involved mineralization process, which is regulated by dual biological macromolecules: bovine serum albumin (BSA) and poly-L-lysine (PLL). BSA functions to stabilize the primary calcium phosphate clusters; PLL further tunes the cluster's evolution (toward larger and crystalline particles) into a metastable fashion, and meanwhile inhibits the local bacteria. Upon treatments, the system generates amorphous MCPC with ultrasmall size (1-2 nm); then they enter the deep dentinal tubules, subsequently aggregate and crystalline into immobile larger particles, which finally seal the exposed dentinal tubules. The effective occlusion of dentinal tubules as well as significant antibacterial performance are confirmed both in vivo and in vitro. This study has devised not only a regulatory approach for the evolution of mineralization-active clusters but also established an efficient method for managing dentin hypersensitivity.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2405074"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202405074","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dentin hypersensitivity caused by the exposure of dentinal tubules is affecting a significant portion of the population. With promising prospects, the biomimetic mineralization materials used in treating dentin hypersensitivity are expected to possess a metastable characteristic, for which they can easily penetrate the tubules and the surrounding tissues, but then occlude them via a transformation of size and phase immediately. Herein, this study develops a metastable calcium phosphate cluster (MCPC)-involved mineralization process, which is regulated by dual biological macromolecules: bovine serum albumin (BSA) and poly-L-lysine (PLL). BSA functions to stabilize the primary calcium phosphate clusters; PLL further tunes the cluster's evolution (toward larger and crystalline particles) into a metastable fashion, and meanwhile inhibits the local bacteria. Upon treatments, the system generates amorphous MCPC with ultrasmall size (1-2 nm); then they enter the deep dentinal tubules, subsequently aggregate and crystalline into immobile larger particles, which finally seal the exposed dentinal tubules. The effective occlusion of dentinal tubules as well as significant antibacterial performance are confirmed both in vivo and in vitro. This study has devised not only a regulatory approach for the evolution of mineralization-active clusters but also established an efficient method for managing dentin hypersensitivity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信