{"title":"Algebraic Diagrammatic Construction Theory of Charged Excitations with Consistent Treatment of Spin-Orbit Coupling and Dynamic Correlation.","authors":"Rajat Majumder, Alexander Yu Sokolov","doi":"10.1021/acs.jctc.4c01762","DOIUrl":null,"url":null,"abstract":"<p><p>We present algebraic diagrammatic construction theory for simulating spin-orbit coupling and electron correlation in charged electronic states and photoelectron spectra. Our implementation supports Hartree-Fock and multiconfigurational reference wave functions, enabling efficient correlated calculations of relativistic effects using single-reference (SR-) and multireference-algebraic diagrammatic construction (MR-ADC). We combine the SR- and MR-ADC methods with three flavors of spin-orbit two-component Hamiltonians and benchmark their performance for a variety of atoms and small molecules. When multireference effects are not important, the SR-ADC approximations are competitive in accuracy to MR-ADC, often showing closer agreement with experimental results. However, for electronic states with multiconfigurational character and in nonequilibrium regions of potential energy surfaces, the MR-ADC methods are more reliable, predicting accurate excitation energies and zero-field splittings. Our results demonstrate that the spin-orbit ADC methods are promising approaches for interpreting and predicting the results of modern spectroscopies.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01762","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present algebraic diagrammatic construction theory for simulating spin-orbit coupling and electron correlation in charged electronic states and photoelectron spectra. Our implementation supports Hartree-Fock and multiconfigurational reference wave functions, enabling efficient correlated calculations of relativistic effects using single-reference (SR-) and multireference-algebraic diagrammatic construction (MR-ADC). We combine the SR- and MR-ADC methods with three flavors of spin-orbit two-component Hamiltonians and benchmark their performance for a variety of atoms and small molecules. When multireference effects are not important, the SR-ADC approximations are competitive in accuracy to MR-ADC, often showing closer agreement with experimental results. However, for electronic states with multiconfigurational character and in nonequilibrium regions of potential energy surfaces, the MR-ADC methods are more reliable, predicting accurate excitation energies and zero-field splittings. Our results demonstrate that the spin-orbit ADC methods are promising approaches for interpreting and predicting the results of modern spectroscopies.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.