Xiang Ye, Jihong Zhang, Haikuan Yang, Shusheng Yang, Qiong Ren, Yang Peng
{"title":"Reductive deoxygenation of alcohols by PMHS assisted by iodide.","authors":"Xiang Ye, Jihong Zhang, Haikuan Yang, Shusheng Yang, Qiong Ren, Yang Peng","doi":"10.1039/d4ob01947d","DOIUrl":null,"url":null,"abstract":"<p><p>The deoxygenation of alcohols is an important and extensively studied research area in modern organic chemistry. However, a chemoselective and clean method is still required for large-scale biochemical production. Herein, we report a strategy for the deoxygenation of alcohols into alkanes using polymethylsiloxane (PMHS) as the reductant with the assistance of iodide. This method, which does not require a metal catalyst, furnishes 5-methylfurfural in 99% yield from hydroxymethylfurfural within 2 h at 140 °C and tolerated a broad scope of functional groups, including phenyl, furanyl, naphthyl, thienyl and allyl alcohol derivatives. A kinetic study revealed that cleavage of the C-I bond formed by the substitution of the hydroxyl group by iodide is the rate-determining step. A mechanistic study suggested a radical mechanism for this alcohol deoxygenation reaction.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01947d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The deoxygenation of alcohols is an important and extensively studied research area in modern organic chemistry. However, a chemoselective and clean method is still required for large-scale biochemical production. Herein, we report a strategy for the deoxygenation of alcohols into alkanes using polymethylsiloxane (PMHS) as the reductant with the assistance of iodide. This method, which does not require a metal catalyst, furnishes 5-methylfurfural in 99% yield from hydroxymethylfurfural within 2 h at 140 °C and tolerated a broad scope of functional groups, including phenyl, furanyl, naphthyl, thienyl and allyl alcohol derivatives. A kinetic study revealed that cleavage of the C-I bond formed by the substitution of the hydroxyl group by iodide is the rate-determining step. A mechanistic study suggested a radical mechanism for this alcohol deoxygenation reaction.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.