{"title":"VvprePIP, the Precursor of a PAMP-Induced Secreted Peptide, Stimulates Defence Responses and Improves Resistance to Plasmopora viticola in Grapevine.","authors":"Huimin Huang, Jiaqi Liu, Wei Wu, Jiang Lu","doi":"10.1111/pce.15439","DOIUrl":null,"url":null,"abstract":"<p><p>PRRs (Pattern-Recognition Receptors) distributed on plant cell membranes recognize not only PAMPs (Pathogen-Associated Molecular Patterns) released from the pathogens but also ligand peptides secreted from the plants, followed by eliciting defence responses. Here, we demonstrate that transcription of VvprePIP from grape (Vitis vinifera) encoding the precursor of a PIP (PAMP-Induced secreted Peptide) peptide is activated by Plasmopara viticola infection. Overexpression of VvprePIP increases the expression of defence-related genes and ROS (Reactive Oxygen Species) production, enhancing resistance to P. viticola in V. vinifera. A WRKY transcription factor VvWRKY8 interacts with VvprePIP promoter, upregulating its transcription directly. The immune reactions resulting from ectopic expression of VvprePIP are impaired in NbBAK1-silencing tobacco, implying BAK1 is necessary for the recognition between mature peptide VvPIP and its receptor. The conserved region at the C terminus of VvprePIP carries three typical SGPS-GH motifs, all of which contribute to provoke immune responses in plant. As synthetic VvPIP with a hydroxylated modification at the forth proline can mimic the functions of overexpression of the precursor, while synthetic unmodified VvPIP cannot, we reported that hydroxyproline is required for VvPIPs to serve as an active signal molecular. In conclusion, our studies reveal that VvprePIP plays a role in enhancing plant resistance to pathogens.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15439","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
PRRs (Pattern-Recognition Receptors) distributed on plant cell membranes recognize not only PAMPs (Pathogen-Associated Molecular Patterns) released from the pathogens but also ligand peptides secreted from the plants, followed by eliciting defence responses. Here, we demonstrate that transcription of VvprePIP from grape (Vitis vinifera) encoding the precursor of a PIP (PAMP-Induced secreted Peptide) peptide is activated by Plasmopara viticola infection. Overexpression of VvprePIP increases the expression of defence-related genes and ROS (Reactive Oxygen Species) production, enhancing resistance to P. viticola in V. vinifera. A WRKY transcription factor VvWRKY8 interacts with VvprePIP promoter, upregulating its transcription directly. The immune reactions resulting from ectopic expression of VvprePIP are impaired in NbBAK1-silencing tobacco, implying BAK1 is necessary for the recognition between mature peptide VvPIP and its receptor. The conserved region at the C terminus of VvprePIP carries three typical SGPS-GH motifs, all of which contribute to provoke immune responses in plant. As synthetic VvPIP with a hydroxylated modification at the forth proline can mimic the functions of overexpression of the precursor, while synthetic unmodified VvPIP cannot, we reported that hydroxyproline is required for VvPIPs to serve as an active signal molecular. In conclusion, our studies reveal that VvprePIP plays a role in enhancing plant resistance to pathogens.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.