Somatic variations in the meiosis-specific gene CrMER3 confer seedlessness in a citrus bud sport.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yan-Jie Fan, Ze-Zhen Du, Xing-Yi He, Zi-Ang Liu, Ji-Xin Zhuang, Gong-Ao Xiao, Yao-Yuan Duan, Feng-Quan Tan, Kai-Dong Xie, Wen-Biao Jiao, Fei Zhang, Chao Yang, Wen-Wu Guo, Xiao-Meng Wu
{"title":"Somatic variations in the meiosis-specific gene CrMER3 confer seedlessness in a citrus bud sport.","authors":"Yan-Jie Fan, Ze-Zhen Du, Xing-Yi He, Zi-Ang Liu, Ji-Xin Zhuang, Gong-Ao Xiao, Yao-Yuan Duan, Feng-Quan Tan, Kai-Dong Xie, Wen-Biao Jiao, Fei Zhang, Chao Yang, Wen-Wu Guo, Xiao-Meng Wu","doi":"10.1111/jipb.13872","DOIUrl":null,"url":null,"abstract":"<p><p>Seedlessness is a most valuable trait in fruit crops for fresh consumption and processing. The mutations in essential meiosis genes are known to confer sterility and seed abortion in plants. However, defects in meiosis have rarely been reported in fruit crops. Here, we found meiosis defects caused sterility in a seedless citrus bud sport cultivar, with massive unpaired univalents during diakinesis, indicating a disruption in crossover formation. A non-functional CrMER3A<sup>-103 bp</sup> allele with a 103-bp deletion in the gene body, together with the other non-functional CrMER3a allele with a T deletion in exon, were identified in the seedless cultivar. The CrMER3 protein was undetectable at meiotic prophase I in the seedless cultivar, and knock out of CrMER3 resulted in sterility in precocious Mini-citrus. Therefore, the natural variation in CrMER3 is responsible for sterility and seedlessness in this bud sport cultivar. The CrMER3a allele originated from the primitive wild mandarin and was passed to cultivated mandarins. A Kompetitive Allele-Specific PCR (KASP) marker was developed to identify citrus germplasm with CrMER3a allele and to screen potential sterile and seedless hybrids in citrus cross breeding. Uncovering the natural mutations responsible for meiosis defects in citrus enhances our understanding of mechanisms controlling seedlessness in fruit crops and facilitates breeding of seedless varieties.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13872","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Seedlessness is a most valuable trait in fruit crops for fresh consumption and processing. The mutations in essential meiosis genes are known to confer sterility and seed abortion in plants. However, defects in meiosis have rarely been reported in fruit crops. Here, we found meiosis defects caused sterility in a seedless citrus bud sport cultivar, with massive unpaired univalents during diakinesis, indicating a disruption in crossover formation. A non-functional CrMER3A-103 bp allele with a 103-bp deletion in the gene body, together with the other non-functional CrMER3a allele with a T deletion in exon, were identified in the seedless cultivar. The CrMER3 protein was undetectable at meiotic prophase I in the seedless cultivar, and knock out of CrMER3 resulted in sterility in precocious Mini-citrus. Therefore, the natural variation in CrMER3 is responsible for sterility and seedlessness in this bud sport cultivar. The CrMER3a allele originated from the primitive wild mandarin and was passed to cultivated mandarins. A Kompetitive Allele-Specific PCR (KASP) marker was developed to identify citrus germplasm with CrMER3a allele and to screen potential sterile and seedless hybrids in citrus cross breeding. Uncovering the natural mutations responsible for meiosis defects in citrus enhances our understanding of mechanisms controlling seedlessness in fruit crops and facilitates breeding of seedless varieties.

减数分裂特异性基因 CrMER3 的体细胞变异赋予柑橘花蕾运动无籽性。
无籽是水果作物在新鲜消费和加工方面最具价值的特性。已知减数分裂基因的突变可导致植物的不育和种子败育。然而,在水果作物中很少有减数分裂缺陷的报道。在这里,我们发现减数分裂缺陷导致了一个无籽柑橘芽运动品种的不育,在分裂过程中有大量未配对的单价,表明交叉形成的中断。在无籽栽培品种中鉴定出一个基因体缺失103 bp的非功能性CrMER3a -103 bp等位基因,以及另一个外显子T缺失的非功能性CrMER3a等位基因。在无籽品种减数分裂前期ⅰ中检测不到CrMER3蛋白,敲除CrMER3导致早熟迷你柑橘不育。因此,CrMER3基因的自然变异是导致该芽动品种不育和无籽的原因。CrMER3a等位基因起源于原始野生柑橘,并传给栽培柑橘。利用竞争性等位基因特异性PCR (competitive allele - specific PCR, KASP)标记鉴定含有CrMER3a等位基因的柑橘种质资源,并在柑橘杂交育种中筛选潜在的不育和无核杂种。揭示柑橘减数分裂缺陷的自然突变有助于我们对水果作物无籽的控制机制的理解,并有助于无籽品种的选育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信