Karla Lambaren, Noah Trac, Daniel Fehrenbach, Meena Madhur, Eun Ji Chung
{"title":"T Cell-Targeting Nanotherapies for Atherosclerosis.","authors":"Karla Lambaren, Noah Trac, Daniel Fehrenbach, Meena Madhur, Eun Ji Chung","doi":"10.1021/acs.bioconjchem.4c00590","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases remain the leading cause of mortality worldwide. Specifically, atherosclerosis is a primary cause of acute cardiac events. However, current therapies mainly focus on lipid-lowering versus addressing the underlying inflammatory response that leads to its development and progression. Nanoparticle-mediated drug delivery offers a promising approach for targeting and regulating these inflammatory responses. In atherosclerotic lesions, inflammatory cascades result in increased T helper (Th) 1 and Th17 activity and reduced T regulatory activation. The regulation of T cell responses is critical in preventing the inflammatory imbalance in atherosclerosis, making them a key therapeutic target for nanotherapy to achieve precise atherosclerosis treatment. By functionalizing nanoparticles with targeting modalities, therapeutic agents can be delivered specifically to immune cells in atherosclerotic lesions. In this Review, we outline the role of T cells in atherosclerosis, examine current nanotherapeutic strategies for targeting T cells and modulating their differentiation, and provide perspectives for the development of nanoparticles specifically tailored to target T cells for the treatment of atherosclerosis.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00590","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases remain the leading cause of mortality worldwide. Specifically, atherosclerosis is a primary cause of acute cardiac events. However, current therapies mainly focus on lipid-lowering versus addressing the underlying inflammatory response that leads to its development and progression. Nanoparticle-mediated drug delivery offers a promising approach for targeting and regulating these inflammatory responses. In atherosclerotic lesions, inflammatory cascades result in increased T helper (Th) 1 and Th17 activity and reduced T regulatory activation. The regulation of T cell responses is critical in preventing the inflammatory imbalance in atherosclerosis, making them a key therapeutic target for nanotherapy to achieve precise atherosclerosis treatment. By functionalizing nanoparticles with targeting modalities, therapeutic agents can be delivered specifically to immune cells in atherosclerotic lesions. In this Review, we outline the role of T cells in atherosclerosis, examine current nanotherapeutic strategies for targeting T cells and modulating their differentiation, and provide perspectives for the development of nanoparticles specifically tailored to target T cells for the treatment of atherosclerosis.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.