Enhancing thermostability of Moloney murine leukemia virus reverse transcriptase through greedy combination of multiple mutant residues.

IF 4.3 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Youhui Yang, Jie Zhang, Zhong Li, Hao Qi
{"title":"Enhancing thermostability of Moloney murine leukemia virus reverse transcriptase through greedy combination of multiple mutant residues.","authors":"Youhui Yang, Jie Zhang, Zhong Li, Hao Qi","doi":"10.1186/s40643-025-00845-0","DOIUrl":null,"url":null,"abstract":"<p><p>Reverse transcription is crucial in bioengineering and biomedical fields, particularly for genome sequencing and virus diagnosis. Enhancing the thermostability of reverse transcriptase can significantly improve its efficiency and accuracy by enabling it to function at higher temperatures, thereby reducing RNA secondary structures and minimizing interference from contaminating enzymes, particularly in clinical samples. Here, using a combinatorial strategy, a variant of Moloney Murine Leukemia Virus reverse transcriptase (MMLV RT) with improved activity across a wide temperature range (30-50 °C) was identified and maintained 100% activity after incubation at 50 °C for 10 min. Eleven hot-spot residues were mutated in various combinations, and the mutant proteins were rapidly expressed in a cell-free system for reverse transcription activity testing. Variant M5, which carries five mutated residues (E47K/E280R/T284R/L413G/D631V), exhibited enhanced thermostability and activity compared to any variant with a single residue mutation. Using purified recombinant protein for precise characterization, the melting temperature (Tm) of M5 increased by 4.7 °C when assembled with a nucleotide template-primer (T/P). Consequently, the half-life of M5 at 50 °C extended to approximately 60 min, in contrast to less than 4 min for the wild type. These findings demonstrate that the epistasis of combining multiple mutant residues holds excellent potential for significantly enhancing enzyme activity, even with existing knowledge. This heat-stable MMLV RT variant M5 may potentially improve efficiency and accuracy in molecular biology research and clinical diagnostics.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"12"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842686/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00845-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Reverse transcription is crucial in bioengineering and biomedical fields, particularly for genome sequencing and virus diagnosis. Enhancing the thermostability of reverse transcriptase can significantly improve its efficiency and accuracy by enabling it to function at higher temperatures, thereby reducing RNA secondary structures and minimizing interference from contaminating enzymes, particularly in clinical samples. Here, using a combinatorial strategy, a variant of Moloney Murine Leukemia Virus reverse transcriptase (MMLV RT) with improved activity across a wide temperature range (30-50 °C) was identified and maintained 100% activity after incubation at 50 °C for 10 min. Eleven hot-spot residues were mutated in various combinations, and the mutant proteins were rapidly expressed in a cell-free system for reverse transcription activity testing. Variant M5, which carries five mutated residues (E47K/E280R/T284R/L413G/D631V), exhibited enhanced thermostability and activity compared to any variant with a single residue mutation. Using purified recombinant protein for precise characterization, the melting temperature (Tm) of M5 increased by 4.7 °C when assembled with a nucleotide template-primer (T/P). Consequently, the half-life of M5 at 50 °C extended to approximately 60 min, in contrast to less than 4 min for the wild type. These findings demonstrate that the epistasis of combining multiple mutant residues holds excellent potential for significantly enhancing enzyme activity, even with existing knowledge. This heat-stable MMLV RT variant M5 may potentially improve efficiency and accuracy in molecular biology research and clinical diagnostics.

通过多个突变残基的贪婪组合提高莫隆尼鼠白血病病毒逆转录酶的耐热性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresources and Bioprocessing
Bioresources and Bioprocessing BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
8.70%
发文量
118
审稿时长
13 weeks
期刊介绍: Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信