Strigolactones, ROS and ABA Regulate Systemic Salt-Tolerance Priming Signals Between Dodder-Connected Tobacco Plants.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Xijie Zheng, Jingxiong Zhang, Man Zhao, Zhongxiang Su, Hongjing Li, Jianqiang Wu
{"title":"Strigolactones, ROS and ABA Regulate Systemic Salt-Tolerance Priming Signals Between Dodder-Connected Tobacco Plants.","authors":"Xijie Zheng, Jingxiong Zhang, Man Zhao, Zhongxiang Su, Hongjing Li, Jianqiang Wu","doi":"10.1111/pce.15438","DOIUrl":null,"url":null,"abstract":"<p><p>The parasitic plants dodders (Cuscuta spp., Convolvulaceae) can often simultaneously parasitize two or more neighbouring hosts, forming dodder-connected plant clusters. In a dodder-connected plant cluster, salt-induced systemic priming signals are transferred from the salt-stressed host (signal donor, SD) to the other host (signal receiver, SR) through dodder and prime the SR plants for enhanced salt tolerance, but what signalling pathways regulate the dodder-mediated interplant priming signals remain unclear. In this study, using genetic analyses, we show that in dodder-connected tobacco (Nicotiana tabacum) clusters, the strigolactone (SL), reactive oxygen species (ROS) and abscisic acid (ABA) pathway in the SD plants negatively control the salt stress-induced systemic signals from SD to SR plants. Transcriptome data suggested that the salt-induced systemic signals regulated by SLs in the SD plants may also affect the ABA and ROS signalling pathway in the SR plants. Quantification of the ABA and H<sub>2</sub>O<sub>2</sub> contents in the SD plants suggested that the SL and ROS signalling likely converge on the ABA pathway to regulate the priming signals. This study reveals the important regulatory roles of phytohormones and ROS in dodder-mediated interplant communications and provides new insight into systemic signalling during salt stress adaptation in individual plants.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15438","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The parasitic plants dodders (Cuscuta spp., Convolvulaceae) can often simultaneously parasitize two or more neighbouring hosts, forming dodder-connected plant clusters. In a dodder-connected plant cluster, salt-induced systemic priming signals are transferred from the salt-stressed host (signal donor, SD) to the other host (signal receiver, SR) through dodder and prime the SR plants for enhanced salt tolerance, but what signalling pathways regulate the dodder-mediated interplant priming signals remain unclear. In this study, using genetic analyses, we show that in dodder-connected tobacco (Nicotiana tabacum) clusters, the strigolactone (SL), reactive oxygen species (ROS) and abscisic acid (ABA) pathway in the SD plants negatively control the salt stress-induced systemic signals from SD to SR plants. Transcriptome data suggested that the salt-induced systemic signals regulated by SLs in the SD plants may also affect the ABA and ROS signalling pathway in the SR plants. Quantification of the ABA and H2O2 contents in the SD plants suggested that the SL and ROS signalling likely converge on the ABA pathway to regulate the priming signals. This study reveals the important regulatory roles of phytohormones and ROS in dodder-mediated interplant communications and provides new insight into systemic signalling during salt stress adaptation in individual plants.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信