"Hot-dog-string" drug-eluting degradable stents for treating stenosis in tortuous arteries.

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Chen-Hung Lee, Pin-Chao Feng, Shih-Jie Hsu, Yi-Hua Kuo, Shih-Jung Liu
{"title":"\"Hot-dog-string\" drug-eluting degradable stents for treating stenosis in tortuous arteries.","authors":"Chen-Hung Lee, Pin-Chao Feng, Shih-Jie Hsu, Yi-Hua Kuo, Shih-Jung Liu","doi":"10.1039/d4bm01478b","DOIUrl":null,"url":null,"abstract":"<p><p>Despite advances in cardiovascular technology, treating stenosis in tortuous arteries with balloon-expandable stents, typically deployed in a straight orientation, remains a challenge. This study developed novel balloon-expandable \"hot-dog-string\" (HDS) drug-eluting poly(ε-caprolactone) (PCL) nanofibrous stents using solvent casting and coaxial electrospinning techniques. A unique HDS geometry was designed for the PCL stent backbone, while aspirin and sirolimus were loaded into the core-sheath structured poly(lactic-<i>co</i>-glycolic acid) (PLGA) nanofibers, which were then wrapped around the degradable stent. <i>In vitro</i> characterization of the biodegradable HDS stent and drug-eluting nanofibers was conducted. The results indicate that the biodegradable HDS stents exhibited excellent mechanical properties and superior flexibility, allowing them to navigate curved sections of a simulated <i>in vitro</i> vessel model more effectively than metallic stents. The core-sheath structure of the nanofibers enabled sustained release of high concentrations of aspirin and sirolimus over 14 and 23 days, respectively, with sirolimus effectively inhibiting smooth muscle cell proliferation. Moreover, <i>in vivo</i> animal tests showed that the rabbits remained in good health with excellent vessel patency following stent placement. By implementing the innovative design and techniques proposed in this study, we anticipate fabricating biodegradable drug-eluting HDS stents of various sizes for diverse cardiovascular applications at curved lesions.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01478b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite advances in cardiovascular technology, treating stenosis in tortuous arteries with balloon-expandable stents, typically deployed in a straight orientation, remains a challenge. This study developed novel balloon-expandable "hot-dog-string" (HDS) drug-eluting poly(ε-caprolactone) (PCL) nanofibrous stents using solvent casting and coaxial electrospinning techniques. A unique HDS geometry was designed for the PCL stent backbone, while aspirin and sirolimus were loaded into the core-sheath structured poly(lactic-co-glycolic acid) (PLGA) nanofibers, which were then wrapped around the degradable stent. In vitro characterization of the biodegradable HDS stent and drug-eluting nanofibers was conducted. The results indicate that the biodegradable HDS stents exhibited excellent mechanical properties and superior flexibility, allowing them to navigate curved sections of a simulated in vitro vessel model more effectively than metallic stents. The core-sheath structure of the nanofibers enabled sustained release of high concentrations of aspirin and sirolimus over 14 and 23 days, respectively, with sirolimus effectively inhibiting smooth muscle cell proliferation. Moreover, in vivo animal tests showed that the rabbits remained in good health with excellent vessel patency following stent placement. By implementing the innovative design and techniques proposed in this study, we anticipate fabricating biodegradable drug-eluting HDS stents of various sizes for diverse cardiovascular applications at curved lesions.

用于治疗迂曲动脉狭窄的 "热狗绳 "药物洗脱可降解支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信