{"title":"A non-Hebbian code for episodic memory","authors":"Rich Pang, Stefano Recanatesi","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Hebbian plasticity has long dominated neurobiological models of memory formation. Yet, plasticity rules operating on one-shot episodic memory timescales rarely depend on both pre- and postsynaptic spiking, challenging Hebbian theory in this crucial regime. Here, we present an episodic memory model governed by a simpler rule depending only on presynaptic activity. We show that this rule, capitalizing on high-dimensional neural activity with restricted transitions, naturally stores episodes as paths through complex state spaces like those underlying a world model. The resulting memory traces, which we term path vectors, are highly expressive and decodable with an odor-tracking algorithm. We show that path vectors are robust alternatives to Hebbian traces, support one-shot sequential and associative recall, along with policy learning, and shed light on specific hippocampal plasticity rules. Thus, non-Hebbian plasticity is sufficient for flexible memory and learning and well-suited to encode episodes and policies as paths through a world model.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 8","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado4112","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado4112","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hebbian plasticity has long dominated neurobiological models of memory formation. Yet, plasticity rules operating on one-shot episodic memory timescales rarely depend on both pre- and postsynaptic spiking, challenging Hebbian theory in this crucial regime. Here, we present an episodic memory model governed by a simpler rule depending only on presynaptic activity. We show that this rule, capitalizing on high-dimensional neural activity with restricted transitions, naturally stores episodes as paths through complex state spaces like those underlying a world model. The resulting memory traces, which we term path vectors, are highly expressive and decodable with an odor-tracking algorithm. We show that path vectors are robust alternatives to Hebbian traces, support one-shot sequential and associative recall, along with policy learning, and shed light on specific hippocampal plasticity rules. Thus, non-Hebbian plasticity is sufficient for flexible memory and learning and well-suited to encode episodes and policies as paths through a world model.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.