A non-Hebbian code for episodic memory

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2025-02-21
Rich Pang, Stefano Recanatesi
{"title":"A non-Hebbian code for episodic memory","authors":"Rich Pang,&nbsp;Stefano Recanatesi","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Hebbian plasticity has long dominated neurobiological models of memory formation. Yet, plasticity rules operating on one-shot episodic memory timescales rarely depend on both pre- and postsynaptic spiking, challenging Hebbian theory in this crucial regime. Here, we present an episodic memory model governed by a simpler rule depending only on presynaptic activity. We show that this rule, capitalizing on high-dimensional neural activity with restricted transitions, naturally stores episodes as paths through complex state spaces like those underlying a world model. The resulting memory traces, which we term path vectors, are highly expressive and decodable with an odor-tracking algorithm. We show that path vectors are robust alternatives to Hebbian traces, support one-shot sequential and associative recall, along with policy learning, and shed light on specific hippocampal plasticity rules. Thus, non-Hebbian plasticity is sufficient for flexible memory and learning and well-suited to encode episodes and policies as paths through a world model.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 8","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado4112","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado4112","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hebbian plasticity has long dominated neurobiological models of memory formation. Yet, plasticity rules operating on one-shot episodic memory timescales rarely depend on both pre- and postsynaptic spiking, challenging Hebbian theory in this crucial regime. Here, we present an episodic memory model governed by a simpler rule depending only on presynaptic activity. We show that this rule, capitalizing on high-dimensional neural activity with restricted transitions, naturally stores episodes as paths through complex state spaces like those underlying a world model. The resulting memory traces, which we term path vectors, are highly expressive and decodable with an odor-tracking algorithm. We show that path vectors are robust alternatives to Hebbian traces, support one-shot sequential and associative recall, along with policy learning, and shed light on specific hippocampal plasticity rules. Thus, non-Hebbian plasticity is sufficient for flexible memory and learning and well-suited to encode episodes and policies as paths through a world model.

Abstract Image

外显记忆的非黑比编码
Hebbian可塑性长期以来一直主导着记忆形成的神经生物学模型。然而,在一次性情景记忆时间尺度上运作的可塑性规则很少同时依赖于突触前和突触后尖峰,这对这个关键机制中的Hebbian理论提出了挑战。在这里,我们提出了一个情景记忆模型,由一个更简单的规则控制,仅依赖于突触前活动。我们展示了这一规则,利用高维神经活动和有限的过渡,自然地将情节存储为通过复杂状态空间的路径,就像那些潜在的世界模型。产生的记忆轨迹,我们称之为路径向量,具有高度的表现力和可解码的气味跟踪算法。我们表明路径向量是Hebbian轨迹的鲁棒替代品,支持一次性顺序和联想回忆,以及策略学习,并阐明了特定的海马可塑性规则。因此,非hebbian可塑性对于灵活的记忆和学习是足够的,并且非常适合将事件和政策编码为通过世界模型的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信