Yixin Wang, Matthew R. Mazloff, Ariane Verdy, Ivana Cerovecki, Malika Kheireddine, Patrick Naylor, George Krokos, Ibrahim Hoteit
{"title":"Observations and Biogeochemical Modeling Reveal Chlorophyll Diel Cycle With Near-Sunset Maxima in the Red Sea","authors":"Yixin Wang, Matthew R. Mazloff, Ariane Verdy, Ivana Cerovecki, Malika Kheireddine, Patrick Naylor, George Krokos, Ibrahim Hoteit","doi":"10.1029/2024GB008226","DOIUrl":null,"url":null,"abstract":"<p>The Red Sea is an extremely warm tropical sea hosting diverse ecosystems, with marine organisms operating at the high end of their thermal tolerance. Therefore, in the context of global warming, it is increasingly important to understand the Red Sea ecosystem, including the variability of chlorophyll at different spatiotemporal scales. Using a coupled physical–biogeochemical model and in situ data, we investigate and quantify the diel cycle in Red Sea chlorophyll concentration for the first time, revealing near-sunset chlorophyll maxima at 17 ± 1 hr local time over the entire basin. This chlorophyll peak time is considerably later than those reported in most other oceans, reflecting the previously reported high irradiance and further suggesting potentially low grazing rates in the Red Sea. Model-based analyses reveal that chlorophyll diel cycle is predominantly controlled by light-driven circadian rhythm (i.e., irradiance), whereas longer-timescale (e.g., seasonal) chlorophyll variability is regulated by nutrient availability, suggesting a light-limited biological production on a diel timescale and a nutrient-limited production on a seasonal scale. The identified chlorophyll diel cycle comprises a fundamental component of the Red Sea ecology and has implications for chlorophyll remote sensing and in situ measurements. Our findings indicate that future field studies investigating phytoplankton growth and zooplankton grazing dynamics—such as phytoplankton community composition and zooplankton diel vertical migration—are still needed to further elucidate the revealed chlorophyll diel cycle in this potentially unique tropical sea.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008226","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008226","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Red Sea is an extremely warm tropical sea hosting diverse ecosystems, with marine organisms operating at the high end of their thermal tolerance. Therefore, in the context of global warming, it is increasingly important to understand the Red Sea ecosystem, including the variability of chlorophyll at different spatiotemporal scales. Using a coupled physical–biogeochemical model and in situ data, we investigate and quantify the diel cycle in Red Sea chlorophyll concentration for the first time, revealing near-sunset chlorophyll maxima at 17 ± 1 hr local time over the entire basin. This chlorophyll peak time is considerably later than those reported in most other oceans, reflecting the previously reported high irradiance and further suggesting potentially low grazing rates in the Red Sea. Model-based analyses reveal that chlorophyll diel cycle is predominantly controlled by light-driven circadian rhythm (i.e., irradiance), whereas longer-timescale (e.g., seasonal) chlorophyll variability is regulated by nutrient availability, suggesting a light-limited biological production on a diel timescale and a nutrient-limited production on a seasonal scale. The identified chlorophyll diel cycle comprises a fundamental component of the Red Sea ecology and has implications for chlorophyll remote sensing and in situ measurements. Our findings indicate that future field studies investigating phytoplankton growth and zooplankton grazing dynamics—such as phytoplankton community composition and zooplankton diel vertical migration—are still needed to further elucidate the revealed chlorophyll diel cycle in this potentially unique tropical sea.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.