Projected runoff declines from plant physiological effects on precipitation

Corey S. Lesk, Jonathan M. Winter, Justin S. Mankin
{"title":"Projected runoff declines from plant physiological effects on precipitation","authors":"Corey S. Lesk, Jonathan M. Winter, Justin S. Mankin","doi":"10.1038/s44221-024-00361-z","DOIUrl":null,"url":null,"abstract":"The impact of plants on runoff under high atmospheric CO2 is a major uncertainty for future water resources. Theory and Earth system models (ESMs) suggest that stricter plant stomatal regulation under high CO2 will reduce transpiration, potentially boosting runoff. Yet, across a 12-member ensemble of idealized ESM simulations that isolate plant responses to CO2, we show that lower transpiration robustly enhances runoff over only 5% of modelled global land area. Precipitation changes are five times more important than transpiration changes in driving runoff responses and are a significant signal of CO2 physiological forcing over 31–57% of land areas across models. Crucially, ESMs largely disagree on where physiologically forced precipitation changes occur but agree that plant responses in most locations are as likely to reduce runoff as increase it. These results imply that large model uncertainties in precipitation responses, rather than transpiration responses, explain why ESMs disagree on plant physiologically driven runoff changes. This study shows that Earth system models disagree on the spatial distribution of plant-induced precipitation changes but indicate that plant responses are as likely to decrease runoff as they are to increase it under rising CO2.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 2","pages":"167-177"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44221-024-00361-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-024-00361-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of plants on runoff under high atmospheric CO2 is a major uncertainty for future water resources. Theory and Earth system models (ESMs) suggest that stricter plant stomatal regulation under high CO2 will reduce transpiration, potentially boosting runoff. Yet, across a 12-member ensemble of idealized ESM simulations that isolate plant responses to CO2, we show that lower transpiration robustly enhances runoff over only 5% of modelled global land area. Precipitation changes are five times more important than transpiration changes in driving runoff responses and are a significant signal of CO2 physiological forcing over 31–57% of land areas across models. Crucially, ESMs largely disagree on where physiologically forced precipitation changes occur but agree that plant responses in most locations are as likely to reduce runoff as increase it. These results imply that large model uncertainties in precipitation responses, rather than transpiration responses, explain why ESMs disagree on plant physiologically driven runoff changes. This study shows that Earth system models disagree on the spatial distribution of plant-induced precipitation changes but indicate that plant responses are as likely to decrease runoff as they are to increase it under rising CO2.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信