Non-Isothermal Decomposition Kinetics of Hafnium and Zirconyl Hydrogentellurates

IF 1.5 4区 化学 Q4 CHEMISTRY, PHYSICAL
Georgi Rusev, Velyana Georgieva, Svetlana Genieva, Ivaylo Tankov
{"title":"Non-Isothermal Decomposition Kinetics of Hafnium and Zirconyl Hydrogentellurates","authors":"Georgi Rusev,&nbsp;Velyana Georgieva,&nbsp;Svetlana Genieva,&nbsp;Ivaylo Tankov","doi":"10.1002/kin.21773","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The thermal characteristics of zirconyl and hafnium hydrogentellurates, ZrO(HTeO<sub>4</sub>)<sub>2</sub> × 4H<sub>2</sub>O (ZrOTe) and Hf(HTeO<sub>4</sub>)<sub>4</sub> × 8H<sub>2</sub>O (HfTe), were investigated via non-isothermal decomposition kinetics in this paper for the first time. Important kinetic parameters such as activation energy (<i>E<sub>A</sub></i>), pre-exponential factor (<i>A</i>) and <i>g</i>(<i>α</i>) function were determined using Coats-Redfern integral method. The latter was verified by means of <i>z</i>(<i>α</i>) master plots. In addition, plausible decomposition mechanisms for the title compounds were offered. Based on the <i>E<sub>A</sub></i> values, less thermal stability for ZrOTe (633.69 kJ/mol) with respect to HfTe (872.24 kJ/mol) was observed. Thermodynamic functions (Δ<i>S</i><sup>≠</sup>, Δ<i>H</i><sup>≠</sup>, and Δ<i>G</i><sup>≠</sup>) of the activated complexes generated during the thermal decomposition steps were studied as well. A high positive Δ<i>H</i><sup>≠</sup> value (855.70 kJ/mol) for the thermal decomposition of HfTe indicated formation of high-ordered activated complexes. In contrast, lower Δ<i>H</i><sup>≠</sup> (612.50 kJ/mol) for ZrOTe suggested easier formation the transition states in that case.</p>\n </div>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 4","pages":"254-262"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21773","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal characteristics of zirconyl and hafnium hydrogentellurates, ZrO(HTeO4)2 × 4H2O (ZrOTe) and Hf(HTeO4)4 × 8H2O (HfTe), were investigated via non-isothermal decomposition kinetics in this paper for the first time. Important kinetic parameters such as activation energy (EA), pre-exponential factor (A) and g(α) function were determined using Coats-Redfern integral method. The latter was verified by means of z(α) master plots. In addition, plausible decomposition mechanisms for the title compounds were offered. Based on the EA values, less thermal stability for ZrOTe (633.69 kJ/mol) with respect to HfTe (872.24 kJ/mol) was observed. Thermodynamic functions (ΔS, ΔH, and ΔG) of the activated complexes generated during the thermal decomposition steps were studied as well. A high positive ΔH value (855.70 kJ/mol) for the thermal decomposition of HfTe indicated formation of high-ordered activated complexes. In contrast, lower ΔH (612.50 kJ/mol) for ZrOTe suggested easier formation the transition states in that case.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
74
审稿时长
3 months
期刊介绍: As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信