Gabriela Merker Breyer, Silvia De Carli, Maria Eduarda Rocha Jacques da Silva, Maria Eduarda Dias, Ana Paula Muterle Varela, Michele Bertoni Mann, Jeverson Frazzon, Fabiana Quoos Mayer, Itabajara da Silva Vaz Junior, Franciele Maboni Siqueira
{"title":"Enterotoxigenic Escherichia coli as a Modulator of the Entero-Pulmonary Axis in Piglets: Impacts on the Microbiota and Immune Responses","authors":"Gabriela Merker Breyer, Silvia De Carli, Maria Eduarda Rocha Jacques da Silva, Maria Eduarda Dias, Ana Paula Muterle Varela, Michele Bertoni Mann, Jeverson Frazzon, Fabiana Quoos Mayer, Itabajara da Silva Vaz Junior, Franciele Maboni Siqueira","doi":"10.1155/tbed/8865503","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The high prevalence of enterotoxigenic <i>Escherichia coli</i> (ETEC) in nondiarrheic piglets contributes to its rapid spread; however, few studies have explored the effects of latent gastrointestinal pathogens on animal health. Therefore, using high-throughput sequencing approaches, we explored changes in entero-pulmonary microbiota and immune gene expression in healthy, asymptomatic, and diarrheic piglets. As expected, bacterial communities were less diverse in the respiratory tract than in the gut, with a site-specific composition that was more stable in the gut and highly variable in the lung among the investigated animals. Although no significant changes in diversity rates were seen based on ETEC-carrier state, our findings suggest that ETEC’s presence can cause dysbiosis in the gut and lung in asymptomatic and diarrheic piglets, reinforcing the crosstalk in the entero-pulmonary axis. We also identified potential bacterial biomarkers that can be used to monitor piglet health: <i>Sphaerochaeta</i>, <i>Bacteroides</i>, <i>Butyricoccus</i>, and <i>Blautia</i> were highly represented in the gut, while <i>Streptococcus</i> and <i>Prevotellaceae</i> NK3B31 group were enriched in the lungs of healthy piglets. In addition, most metabolic pathways predicted in the bacterial communities were shared despite the ETEC-carrier state, with differences observed only in the gut microbiota, suggesting that ETEC’s presence may impact substrate utilization. Finally, we observed shifts in the intestinal expression of <i>tff2</i> and <i>cd36</i> immune markers between healthy and diarrheic piglets, which might suggest their use as prognostic markers for postweaning diarrhea (PWD). Although the effect remains unclear, the ETEC-carrier state also altered the transcription of other markers locally (in the gut and lung) and systemically, which corroborates the shared mucosal immunity in the entero-pulmonary axis in piglets. Overall, despite limitations regarding sample size, our findings give clues about the entero-pulmonary dynamics in piglets in the presence of a gastrointestinal pathogen, representing a starting point for future research on this axis for veterinary purposes.</p>\n </div>","PeriodicalId":234,"journal":{"name":"Transboundary and Emerging Diseases","volume":"2025 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/tbed/8865503","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transboundary and Emerging Diseases","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/tbed/8865503","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
The high prevalence of enterotoxigenic Escherichia coli (ETEC) in nondiarrheic piglets contributes to its rapid spread; however, few studies have explored the effects of latent gastrointestinal pathogens on animal health. Therefore, using high-throughput sequencing approaches, we explored changes in entero-pulmonary microbiota and immune gene expression in healthy, asymptomatic, and diarrheic piglets. As expected, bacterial communities were less diverse in the respiratory tract than in the gut, with a site-specific composition that was more stable in the gut and highly variable in the lung among the investigated animals. Although no significant changes in diversity rates were seen based on ETEC-carrier state, our findings suggest that ETEC’s presence can cause dysbiosis in the gut and lung in asymptomatic and diarrheic piglets, reinforcing the crosstalk in the entero-pulmonary axis. We also identified potential bacterial biomarkers that can be used to monitor piglet health: Sphaerochaeta, Bacteroides, Butyricoccus, and Blautia were highly represented in the gut, while Streptococcus and Prevotellaceae NK3B31 group were enriched in the lungs of healthy piglets. In addition, most metabolic pathways predicted in the bacterial communities were shared despite the ETEC-carrier state, with differences observed only in the gut microbiota, suggesting that ETEC’s presence may impact substrate utilization. Finally, we observed shifts in the intestinal expression of tff2 and cd36 immune markers between healthy and diarrheic piglets, which might suggest their use as prognostic markers for postweaning diarrhea (PWD). Although the effect remains unclear, the ETEC-carrier state also altered the transcription of other markers locally (in the gut and lung) and systemically, which corroborates the shared mucosal immunity in the entero-pulmonary axis in piglets. Overall, despite limitations regarding sample size, our findings give clues about the entero-pulmonary dynamics in piglets in the presence of a gastrointestinal pathogen, representing a starting point for future research on this axis for veterinary purposes.
期刊介绍:
Transboundary and Emerging Diseases brings together in one place the latest research on infectious diseases considered to hold the greatest economic threat to animals and humans worldwide. The journal provides a venue for global research on their diagnosis, prevention and management, and for papers on public health, pathogenesis, epidemiology, statistical modeling, diagnostics, biosecurity issues, genomics, vaccine development and rapid communication of new outbreaks. Papers should include timely research approaches using state-of-the-art technologies. The editors encourage papers adopting a science-based approach on socio-economic and environmental factors influencing the management of the bio-security threat posed by these diseases, including risk analysis and disease spread modeling. Preference will be given to communications focusing on novel science-based approaches to controlling transboundary and emerging diseases. The following topics are generally considered out-of-scope, but decisions are made on a case-by-case basis (for example, studies on cryptic wildlife populations, and those on potential species extinctions):
Pathogen discovery: a common pathogen newly recognised in a specific country, or a new pathogen or genetic sequence for which there is little context about — or insights regarding — its emergence or spread.
Prevalence estimation surveys and risk factor studies based on survey (rather than longitudinal) methodology, except when such studies are unique. Surveys of knowledge, attitudes and practices are within scope.
Diagnostic test development if not accompanied by robust sensitivity and specificity estimation from field studies.
Studies focused only on laboratory methods in which relevance to disease emergence and spread is not obvious or can not be inferred (“pure research” type studies).
Narrative literature reviews which do not generate new knowledge. Systematic and scoping reviews, and meta-analyses are within scope.