Sequential Reactive Processing for the Synthesis of Branched Polypropylene and Propylene–Ethylene Copolymer

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Jorge Guapacha, Lidia M. Quinzani, Marcelo D. Failla
{"title":"Sequential Reactive Processing for the Synthesis of Branched Polypropylene and Propylene–Ethylene Copolymer","authors":"Jorge Guapacha,&nbsp;Lidia M. Quinzani,&nbsp;Marcelo D. Failla","doi":"10.1002/app.56659","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Polypropylene (PP) and random propylene–ethylene copolymer (PEC) with long-chain branches (LCB) have been synthesized from linear polymers by sequential melt reactive processing. The process starts with the grafting of low concentrations of maleic anhydride using an organic peroxide as a radical initiator. Then, halfway through the processing time, the chain-linking agent, m-xylylenediamine (XDA), is added to the reactive medium to generate branched molecular structures. The occurrence of grafting and chain-linking reactions was confirmed by infrared spectroscopy, size exclusion chromatography, and dynamic and transient extensional rheology. Branched polymers with up to ~1 branch per 1000 monomer units were achieved without largely altering the average molecular weights of the original materials and their tensile mechanical properties. The amount of LCB obtained in PEC practically doubles that in the branched PP. Properties such as maximum tensile stress, elastic modulus, and tensile stress at yield were found to be primarily a function of the molecular weight and crystallinity level of the polymers, and not of their degree of LCB. Altogether, the results demonstrate that grafting low concentrations of maleic anhydride onto the polymer with the addition of the chain-linking agent at half processing time is an efficient and practical method to produce polymers with improved melt strength.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 13","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56659","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polypropylene (PP) and random propylene–ethylene copolymer (PEC) with long-chain branches (LCB) have been synthesized from linear polymers by sequential melt reactive processing. The process starts with the grafting of low concentrations of maleic anhydride using an organic peroxide as a radical initiator. Then, halfway through the processing time, the chain-linking agent, m-xylylenediamine (XDA), is added to the reactive medium to generate branched molecular structures. The occurrence of grafting and chain-linking reactions was confirmed by infrared spectroscopy, size exclusion chromatography, and dynamic and transient extensional rheology. Branched polymers with up to ~1 branch per 1000 monomer units were achieved without largely altering the average molecular weights of the original materials and their tensile mechanical properties. The amount of LCB obtained in PEC practically doubles that in the branched PP. Properties such as maximum tensile stress, elastic modulus, and tensile stress at yield were found to be primarily a function of the molecular weight and crystallinity level of the polymers, and not of their degree of LCB. Altogether, the results demonstrate that grafting low concentrations of maleic anhydride onto the polymer with the addition of the chain-linking agent at half processing time is an efficient and practical method to produce polymers with improved melt strength.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信