Finite-Time Consensus Pinning Control Method for Multiple Inverters–Paralleled Photovoltaic Microgrid

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiping Ma, Chen Liang, Xiaoyang Dong, Yaxin Li
{"title":"Finite-Time Consensus Pinning Control Method for Multiple Inverters–Paralleled Photovoltaic Microgrid","authors":"Xiping Ma,&nbsp;Chen Liang,&nbsp;Xiaoyang Dong,&nbsp;Yaxin Li","doi":"10.1155/etep/6275238","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Multiple inverters–paralleled photovoltaic microgrid is a typical cyber-physical system with varying line impedances and unsynchronized nodes that result in unbalanced power sharing and are prone to cause circulating current. Therefore, a complex network based on a finite-time consensus pinning control method for microgrids is proposed in this paper. First, the distributed generators are regarded as agent nodes, and a small-world network model is established based on complex network theory. To overcome the subjectivity of relying on expert experience to select pinning nodes in previous pinning control methods, a selection algorithm that uses only nodes with large out-degree as pinning nodes is proposed to reduce the communication bandwidth requirement of the system. Second, the finite-time consensus algorithm and the pinning control method are integrated to form a finite-time consensus pinning control method. By introducing voltage and frequency correction in the primary control layer, the finite time consensus pinning control method is applied to design distributed secondary controllers. The finite-time stability of the system is analyzed through Lyapunov stability theory. Finally, a hardware-in-the-loop simulation platform is built in StarSim HIL. Compared to the traditional finite-time control method, the proposed method can reduce the peak deviation of nodes by at least 7.7%. The experimental results validate that the proposed method can realize the accurate sharing of active and reactive power in finite time, and the dynamic response speed of the system is significantly improved, with good robustness.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/etep/6275238","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/etep/6275238","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple inverters–paralleled photovoltaic microgrid is a typical cyber-physical system with varying line impedances and unsynchronized nodes that result in unbalanced power sharing and are prone to cause circulating current. Therefore, a complex network based on a finite-time consensus pinning control method for microgrids is proposed in this paper. First, the distributed generators are regarded as agent nodes, and a small-world network model is established based on complex network theory. To overcome the subjectivity of relying on expert experience to select pinning nodes in previous pinning control methods, a selection algorithm that uses only nodes with large out-degree as pinning nodes is proposed to reduce the communication bandwidth requirement of the system. Second, the finite-time consensus algorithm and the pinning control method are integrated to form a finite-time consensus pinning control method. By introducing voltage and frequency correction in the primary control layer, the finite time consensus pinning control method is applied to design distributed secondary controllers. The finite-time stability of the system is analyzed through Lyapunov stability theory. Finally, a hardware-in-the-loop simulation platform is built in StarSim HIL. Compared to the traditional finite-time control method, the proposed method can reduce the peak deviation of nodes by at least 7.7%. The experimental results validate that the proposed method can realize the accurate sharing of active and reactive power in finite time, and the dynamic response speed of the system is significantly improved, with good robustness.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Transactions on Electrical Energy Systems
International Transactions on Electrical Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
6.70
自引率
8.70%
发文量
342
期刊介绍: International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems. Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信