Kai-Yuan Huang, Yuan-Yuan Feng, Hong Du, Chang-Wang Ma, Dan Xie, Tao Wan, Xiu-Yan Feng, Xiao-Gang Dai, Tong-Ming Yin, Xiao-Quan Wang, Jin-Hua Ran
{"title":"DNA methylation dynamics in gymnosperm duplicate genes: implications for genome evolution and stress adaptation","authors":"Kai-Yuan Huang, Yuan-Yuan Feng, Hong Du, Chang-Wang Ma, Dan Xie, Tao Wan, Xiu-Yan Feng, Xiao-Gang Dai, Tong-Ming Yin, Xiao-Quan Wang, Jin-Hua Ran","doi":"10.1111/tpj.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Duplicate genes are pivotal in driving evolutionary innovation, often exhibiting expression divergence that offers a system to investigate the role of DNA methylation in transcriptional regulation. However, previous studies have predominantly focused on angiosperms, leaving the methylation patterns in major lineages of land plants still unclear. This study explores DNA methylation evolution in duplicate genes across representative gymnosperm species with large genomes, spanning over 300 million years, using genomic, transcriptomic, and high-depth DNA methylomic data. We observed variations in DNA methylation levels along gene bodies, flanking regions, and methylation statuses of coding regions across different duplication types. Biased divergences in DNA methylation and gene expression frequently occurred between duplicate copies. Specifically, methylation divergences in the 2-kb downstream regions negatively correlated with gene expression. Both CG and CHG DNA methylation in gene bodies were positively correlated with gene length, suggesting these methylation types may function as an epigenomic buffer to mitigate the adverse impact of gene length on expression. Duplicate genes exhibiting both methylation and expression divergences were notably enriched in adaptation-related biological processes, suggesting that DNA methylation may aid adaptive evolution in gymnosperms by regulating stress response genes. Changes in expression levels correlated with switches in methylation status within coding regions of transposed duplicates. Specifically, depletion for CG methylation or enrichment for non-CG methylation significantly reduced the expression of translocated copies. This correlation suggests that DNA methylation may reduce genetic redundancy by silencing translocated copies. Our study highlights the significance of DNA methylation in plant genome evolution and stress adaptation.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 4","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Duplicate genes are pivotal in driving evolutionary innovation, often exhibiting expression divergence that offers a system to investigate the role of DNA methylation in transcriptional regulation. However, previous studies have predominantly focused on angiosperms, leaving the methylation patterns in major lineages of land plants still unclear. This study explores DNA methylation evolution in duplicate genes across representative gymnosperm species with large genomes, spanning over 300 million years, using genomic, transcriptomic, and high-depth DNA methylomic data. We observed variations in DNA methylation levels along gene bodies, flanking regions, and methylation statuses of coding regions across different duplication types. Biased divergences in DNA methylation and gene expression frequently occurred between duplicate copies. Specifically, methylation divergences in the 2-kb downstream regions negatively correlated with gene expression. Both CG and CHG DNA methylation in gene bodies were positively correlated with gene length, suggesting these methylation types may function as an epigenomic buffer to mitigate the adverse impact of gene length on expression. Duplicate genes exhibiting both methylation and expression divergences were notably enriched in adaptation-related biological processes, suggesting that DNA methylation may aid adaptive evolution in gymnosperms by regulating stress response genes. Changes in expression levels correlated with switches in methylation status within coding regions of transposed duplicates. Specifically, depletion for CG methylation or enrichment for non-CG methylation significantly reduced the expression of translocated copies. This correlation suggests that DNA methylation may reduce genetic redundancy by silencing translocated copies. Our study highlights the significance of DNA methylation in plant genome evolution and stress adaptation.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.