{"title":"Indoor air-pollutant reduction performance of photocatalytic ventilation system in apartments","authors":"Y. W. Song, J. C. Park, M. H. Chung, J. W. Kwark","doi":"10.1007/s13762-024-06136-z","DOIUrl":null,"url":null,"abstract":"<div><p>In apartments and buildings, dilution ventilation systems are traditionally used to improve the air quality and reduce dust and pollution. However, this is not feasible without various filter systems if the outdoor air is not clean. Korea’s atmosphere contains ultrafine dust and various gaseous pollutants. Therefore, the use of air cleaners or ventilation systems with dust collection and activated carbon filters to improve indoor air quality has recently increased. However, traditional dust collection and activated carbon filters exhibit limited performance in removing gaseous pollutants in homes. Photocatalysts remove gaseous pollutants; therefore, a model combining a titanium dioxide (TiO<sub>2</sub>) photocatalytic reactor and mechanical ventilation system, which is mostly applied in new apartments in Korea, was proposed. The performance of indoor pollutant removal was assessed through mock-up tests, and it was verified that formaldehyde (HCHO) could be reduced by at least 35.48% (with 1ACH (air change per hour) over 150 min) and toluene (C<sub>7</sub>H<sub>8</sub>) by at least 39.95% (with 1ACH over 300 min). Thus, it is anticipated that if the photocatalytic ventilation system is applied to apartments, it will provide enhanced performance in the removal of various indoor pollutants.</p></div>","PeriodicalId":589,"journal":{"name":"International Journal of Environmental Science and Technology","volume":"22 6","pages":"4353 - 4368"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13762-024-06136-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In apartments and buildings, dilution ventilation systems are traditionally used to improve the air quality and reduce dust and pollution. However, this is not feasible without various filter systems if the outdoor air is not clean. Korea’s atmosphere contains ultrafine dust and various gaseous pollutants. Therefore, the use of air cleaners or ventilation systems with dust collection and activated carbon filters to improve indoor air quality has recently increased. However, traditional dust collection and activated carbon filters exhibit limited performance in removing gaseous pollutants in homes. Photocatalysts remove gaseous pollutants; therefore, a model combining a titanium dioxide (TiO2) photocatalytic reactor and mechanical ventilation system, which is mostly applied in new apartments in Korea, was proposed. The performance of indoor pollutant removal was assessed through mock-up tests, and it was verified that formaldehyde (HCHO) could be reduced by at least 35.48% (with 1ACH (air change per hour) over 150 min) and toluene (C7H8) by at least 39.95% (with 1ACH over 300 min). Thus, it is anticipated that if the photocatalytic ventilation system is applied to apartments, it will provide enhanced performance in the removal of various indoor pollutants.
期刊介绍:
International Journal of Environmental Science and Technology (IJEST) is an international scholarly refereed research journal which aims to promote the theory and practice of environmental science and technology, innovation, engineering and management.
A broad outline of the journal''s scope includes: peer reviewed original research articles, case and technical reports, reviews and analyses papers, short communications and notes to the editor, in interdisciplinary information on the practice and status of research in environmental science and technology, both natural and man made.
The main aspects of research areas include, but are not exclusive to; environmental chemistry and biology, environments pollution control and abatement technology, transport and fate of pollutants in the environment, concentrations and dispersion of wastes in air, water, and soil, point and non-point sources pollution, heavy metals and organic compounds in the environment, atmospheric pollutants and trace gases, solid and hazardous waste management; soil biodegradation and bioremediation of contaminated sites; environmental impact assessment, industrial ecology, ecological and human risk assessment; improved energy management and auditing efficiency and environmental standards and criteria.