Utilization of waste tire and rubber from automobiles in the manufacturing of particleboards and evaluation of its properties

IF 2.4 3区 农林科学 Q1 FORESTRY
Iveta Čabalová, Jozef Krilek, Tatiana Bubeníková, Ivan Ružiak, Miroslav Nemec, Seng Hua Lee, Muhammad Adly Rahandi Lubis, Anna Darabošová, Vladimír Mancel, Lubos Kristak, Luigi Todaro, Valentina Lo Giudice
{"title":"Utilization of waste tire and rubber from automobiles in the manufacturing of particleboards and evaluation of its properties","authors":"Iveta Čabalová,&nbsp;Jozef Krilek,&nbsp;Tatiana Bubeníková,&nbsp;Ivan Ružiak,&nbsp;Miroslav Nemec,&nbsp;Seng Hua Lee,&nbsp;Muhammad Adly Rahandi Lubis,&nbsp;Anna Darabošová,&nbsp;Vladimír Mancel,&nbsp;Lubos Kristak,&nbsp;Luigi Todaro,&nbsp;Valentina Lo Giudice","doi":"10.1007/s00107-025-02215-1","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this work was to investigate the selected properties of particleboard (PB) containing waste rubber – a mixture of carpets and isolators (GWR) and tires (GWT) from discarded automobiles. Mechanical (tensile strength (IB), bending strength (BS), physical (water absorption (WA), thickness swelling (TS) after 2 and 24 h of immersion), chemical (volatile compounds - VOC using GC-MS method), thermo-physical (thermal conductivity and diffusivity, specific heat capacity) and sound absorption coefficient were analyzed. In addition, a density profile and microscopic analysis of the particleboards were performed. The addition of 10% rubber to the PB either maintains the IB or improves the BS of the composite. The best results for WA after 24 h (97.94%) and TS after 24 h (30.74%) were achieved for composites containing tire granulates. For this reason, these PBs are the most suitable for utilization in areas with higher humidity. Adding 20% of GWR to PB decreased the total content of VOC emissions by 85% so it can be stated that the rubber probably acts as a VOC sorbent. Control PBs had significantly lower thermal conductivity and diffusivity, and comparable specific heat capacity values than PBs containing GWR and GWT. The best sound insulation properties were obtained for PBs containing 20% of GWR. Microscopic analysis pointed to greater GWT and GWR contents resulting in higher C content in the PB. All PBs containing GWR have a higher mean density compared to that of control, ranging from 597 kg·m<sup>−3</sup> to 615 kg·m<sup>−3</sup>. On the other hand, PB containing GWT had comparable or lower density values.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00107-025-02215-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-025-02215-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this work was to investigate the selected properties of particleboard (PB) containing waste rubber – a mixture of carpets and isolators (GWR) and tires (GWT) from discarded automobiles. Mechanical (tensile strength (IB), bending strength (BS), physical (water absorption (WA), thickness swelling (TS) after 2 and 24 h of immersion), chemical (volatile compounds - VOC using GC-MS method), thermo-physical (thermal conductivity and diffusivity, specific heat capacity) and sound absorption coefficient were analyzed. In addition, a density profile and microscopic analysis of the particleboards were performed. The addition of 10% rubber to the PB either maintains the IB or improves the BS of the composite. The best results for WA after 24 h (97.94%) and TS after 24 h (30.74%) were achieved for composites containing tire granulates. For this reason, these PBs are the most suitable for utilization in areas with higher humidity. Adding 20% of GWR to PB decreased the total content of VOC emissions by 85% so it can be stated that the rubber probably acts as a VOC sorbent. Control PBs had significantly lower thermal conductivity and diffusivity, and comparable specific heat capacity values than PBs containing GWR and GWT. The best sound insulation properties were obtained for PBs containing 20% of GWR. Microscopic analysis pointed to greater GWT and GWR contents resulting in higher C content in the PB. All PBs containing GWR have a higher mean density compared to that of control, ranging from 597 kg·m−3 to 615 kg·m−3. On the other hand, PB containing GWT had comparable or lower density values.

求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Wood and Wood Products
European Journal of Wood and Wood Products 工程技术-材料科学:纸与木材
CiteScore
5.40
自引率
3.80%
发文量
124
审稿时长
6.0 months
期刊介绍: European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets. European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信