João Gonçalves, Danny Marfatia, António P. Morais, Roman Pasechnik
{"title":"Gravitational waves from supercooled phase transitions in conformal Majoron models of neutrino mass","authors":"João Gonçalves, Danny Marfatia, António P. Morais, Roman Pasechnik","doi":"10.1007/JHEP02(2025)110","DOIUrl":null,"url":null,"abstract":"<p>We study supercooled first-order phase transitions above the QCD scale in a wide class of conformal Majoron-like U(1)′ models that explain the totality of active neutrino oscillation data and produce a detectable stochastic gravitational wave background (SGWB) at LIGO, LISA and ET. We place constraints on the U(1)′ breaking scale and gauge coupling using current LIGO-Virgo-Kagra data. We find that strong supercooling can be ruled out in large regions of parameter space if a SGWB is not detected by these experiments. A null signal at LIGO and ET will disfavor a type-I seesaw scale above 10<sup>14</sup> GeV, while a positive signal is a signature of heavy right-handed neutrinos. On the other hand, LISA will be sensitive to seesaw scales as low as a TeV, and could detect a SGWB even if the right-handed neutrinos are decoupled.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)110.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP02(2025)110","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We study supercooled first-order phase transitions above the QCD scale in a wide class of conformal Majoron-like U(1)′ models that explain the totality of active neutrino oscillation data and produce a detectable stochastic gravitational wave background (SGWB) at LIGO, LISA and ET. We place constraints on the U(1)′ breaking scale and gauge coupling using current LIGO-Virgo-Kagra data. We find that strong supercooling can be ruled out in large regions of parameter space if a SGWB is not detected by these experiments. A null signal at LIGO and ET will disfavor a type-I seesaw scale above 1014 GeV, while a positive signal is a signature of heavy right-handed neutrinos. On the other hand, LISA will be sensitive to seesaw scales as low as a TeV, and could detect a SGWB even if the right-handed neutrinos are decoupled.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).