SFP6 fluorescent probes for imaging SAM dynamics in living cells

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Shuhui Zhang, Jinghui Li, Gengsheng Cao
{"title":"SFP6 fluorescent probes for imaging SAM dynamics in living cells","authors":"Shuhui Zhang,&nbsp;Jinghui Li,&nbsp;Gengsheng Cao","doi":"10.1007/s00604-025-07039-7","DOIUrl":null,"url":null,"abstract":"<div><p>A genetically encoded probe, SFP6 (S-adenosyl-L-methionine fluorescent probe), based on the principle of fluorescence resonance energy transfer (FRET) was developed. The SFP6 probe dynamically visualizes changes in S-adenosyl-L-methionine (SAM) levels in living cells with high spatiotemporal resolution. The results demonstrated that SFP6 exhibits high sensitivity to SAM, can be stably expressed in various mammalian cells, and has excellent biocompatibility. The probe accurately monitors SAM levels and detects changes caused by both endogenous and exogenous factors. In summary, we have developed a fluorescent probe that can monitor changes in SAM levels with single-cell and time resolution. Dynamic changes in SAM levels are linked to various methylation modifications in cells. Therefore, monitoring intracellular SAM concentrations offers the possibility to study physiological and biochemical processes in real-time, such as gene expression and metabolism, related to methylation modifications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 3","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07039-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A genetically encoded probe, SFP6 (S-adenosyl-L-methionine fluorescent probe), based on the principle of fluorescence resonance energy transfer (FRET) was developed. The SFP6 probe dynamically visualizes changes in S-adenosyl-L-methionine (SAM) levels in living cells with high spatiotemporal resolution. The results demonstrated that SFP6 exhibits high sensitivity to SAM, can be stably expressed in various mammalian cells, and has excellent biocompatibility. The probe accurately monitors SAM levels and detects changes caused by both endogenous and exogenous factors. In summary, we have developed a fluorescent probe that can monitor changes in SAM levels with single-cell and time resolution. Dynamic changes in SAM levels are linked to various methylation modifications in cells. Therefore, monitoring intracellular SAM concentrations offers the possibility to study physiological and biochemical processes in real-time, such as gene expression and metabolism, related to methylation modifications.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信