{"title":"Gravitational EFT for dissipative open systems","authors":"Pak Hang Chris Lau, Kanji Nishii, Toshifumi Noumi","doi":"10.1007/JHEP02(2025)155","DOIUrl":null,"url":null,"abstract":"<p>We elaborate on the effective field theory (EFT) construction for dissipative open systems coupled to dynamical gravity, in light of recent developments on the EFT of dissipative hydrodynamics (HydroEFT). Our construction is based on the Schwinger-Keldysh formalism and its symmetries as well as microscopic unitarity. A key aspect of dynamical gravity is that gravity couples to all degrees of freedom universally, hence the EFT has to take into account the energy-momentum tensor of the environment to which the energy escapes from the dissipative system of interest. We incorporate this effect by modeling the environment based on HydroEFT, assuming validity of the derivative expansion of the environment sector. For illustration, we apply our EFT recipe to a dissipative scalar field coupled to dynamical gravity that can be used, e.g., for dissipative inflation. In particular we quantify impacts of fluctuations in the environment sector on the scalar dynamics. We also apply the same framework to dissipative gravity, discussing dissipative gravitational waves and the generalized second law of black hole thermodynamics.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)155.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP02(2025)155","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We elaborate on the effective field theory (EFT) construction for dissipative open systems coupled to dynamical gravity, in light of recent developments on the EFT of dissipative hydrodynamics (HydroEFT). Our construction is based on the Schwinger-Keldysh formalism and its symmetries as well as microscopic unitarity. A key aspect of dynamical gravity is that gravity couples to all degrees of freedom universally, hence the EFT has to take into account the energy-momentum tensor of the environment to which the energy escapes from the dissipative system of interest. We incorporate this effect by modeling the environment based on HydroEFT, assuming validity of the derivative expansion of the environment sector. For illustration, we apply our EFT recipe to a dissipative scalar field coupled to dynamical gravity that can be used, e.g., for dissipative inflation. In particular we quantify impacts of fluctuations in the environment sector on the scalar dynamics. We also apply the same framework to dissipative gravity, discussing dissipative gravitational waves and the generalized second law of black hole thermodynamics.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).