Asymptotically Optimal Codes for (t, s)-Burst Error

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yubo Sun;Ziyang Lu;Yiwei Zhang;Gennian Ge
{"title":"Asymptotically Optimal Codes for (t, s)-Burst Error","authors":"Yubo Sun;Ziyang Lu;Yiwei Zhang;Gennian Ge","doi":"10.1109/TIT.2025.3531915","DOIUrl":null,"url":null,"abstract":"Recently, codes for correcting a burst of errors have attracted significant attention. One of the most important reasons is that bursts of errors occur in certain emerging techniques, such as DNA storage. In this paper, we investigate a type of error, called a <inline-formula> <tex-math>$(t,s)$ </tex-math></inline-formula>-burst, which deletes t consecutive symbols and inserts s arbitrary symbols at the same coordinate. Note that a <inline-formula> <tex-math>$(t,s)$ </tex-math></inline-formula>-burst error can be seen as a generalization of a burst of insertions (<inline-formula> <tex-math>$t=0$ </tex-math></inline-formula>), a burst of deletions (<inline-formula> <tex-math>$s=0$ </tex-math></inline-formula>), and a burst of substitutions (<inline-formula> <tex-math>$t=s$ </tex-math></inline-formula>). Our main contribution is to give explicit constructions of q-ary <inline-formula> <tex-math>$(t,s)$ </tex-math></inline-formula>-burst correcting codes with <inline-formula> <tex-math>$\\log n + O(1)$ </tex-math></inline-formula> bits of redundancy for any given constant non-negative integers t, s, and <inline-formula> <tex-math>$q \\geq 2$ </tex-math></inline-formula>. These codes have optimal redundancy up to an additive constant. Furthermore, we apply our <inline-formula> <tex-math>$(t,s)$ </tex-math></inline-formula>-burst correcting codes to combat other various types of errors and improve the corresponding results. In particular, one of our byproducts is a permutation code capable of correcting a burst of t stable deletions with <inline-formula> <tex-math>$\\log n + O(1)$ </tex-math></inline-formula> bits of redundancy, which is optimal up to an additive constant.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 3","pages":"1570-1584"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10847779/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, codes for correcting a burst of errors have attracted significant attention. One of the most important reasons is that bursts of errors occur in certain emerging techniques, such as DNA storage. In this paper, we investigate a type of error, called a $(t,s)$ -burst, which deletes t consecutive symbols and inserts s arbitrary symbols at the same coordinate. Note that a $(t,s)$ -burst error can be seen as a generalization of a burst of insertions ( $t=0$ ), a burst of deletions ( $s=0$ ), and a burst of substitutions ( $t=s$ ). Our main contribution is to give explicit constructions of q-ary $(t,s)$ -burst correcting codes with $\log n + O(1)$ bits of redundancy for any given constant non-negative integers t, s, and $q \geq 2$ . These codes have optimal redundancy up to an additive constant. Furthermore, we apply our $(t,s)$ -burst correcting codes to combat other various types of errors and improve the corresponding results. In particular, one of our byproducts is a permutation code capable of correcting a burst of t stable deletions with $\log n + O(1)$ bits of redundancy, which is optimal up to an additive constant.
最近,用于纠正突发错误的编码引起了人们的极大关注。其中一个最重要的原因是,在 DNA 存储等某些新兴技术中会出现突发错误。在本文中,我们研究了一种称为 $(t,s)$ -burst 的错误,它在同一坐标上删除 t 个连续符号并插入 s 个任意符号。请注意,$(t,s)$ 突发性错误可视为插入突发性($t=0$)、删除突发性($s=0$)和替换突发性($t=s$)的一般化。我们的主要贡献是给出了对于任何给定的常数非负整数 t、s 和 $q \geq 2$,具有 $\log n + O(1)$ 比特冗余度的 qary $(t,s)$ 突发纠错码的明确构造。这些编码的最佳冗余度可达一个可加常数。此外,我们还将我们的 $(t,s)$ 爆破纠错码应用于对抗其他各种类型的错误,并改进了相应的结果。特别是,我们的副产品之一是一种能够以 $\log n + O(1)$ 比特的冗余度纠正 t 个稳定删除的突发的置换码,它的冗余度在加常数以内都是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信