Noncontact elastography of soft material using a laser profilometer with airpuff excitation

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Xiao Chen , Yichu Chen , Wei Yu , Sanming Hu , Pengcheng Li
{"title":"Noncontact elastography of soft material using a laser profilometer with airpuff excitation","authors":"Xiao Chen ,&nbsp;Yichu Chen ,&nbsp;Wei Yu ,&nbsp;Sanming Hu ,&nbsp;Pengcheng Li","doi":"10.1016/j.ymssp.2025.112465","DOIUrl":null,"url":null,"abstract":"<div><div>Elasticity is a fundamental property of materials, and recent advancements in wave-based elastography have revealed significant potential for various biomedical and engineering applications, including biomedical imaging, nondestructive evaluation, and structural health monitoring. However, the implementation of elastography requires high-precision imaging systems, which limits its broader applicability. The laser profilometer, a conventional and cost-effective device that operates based on laser triangulation measurement, has been widely utilized in industrial applications for assessing surface profiles. However, its application in elastography has not been previously explored. This study represents, to the best of our knowledge, the first attempt to adapt a laser profilometer for measuring the elasticity of soft materials. A simple and noncontact method for measuring elasticity has been established utilizing the laser profilometer to track the propagation of surface waves on soft materials when excited by an airpuff. The results demonstrate that laser profilometer elastography can track the propagation of surface waves with a broad spectrum following a single airpuff excitation. The temporal separation of wave propagation from the reflected waves enables precise calculation of the propagation velocity of surface waves. The surface wave velocities measured by laser profilometer elastography and laser speckle elastography show strong agreement with a correlation coefficient of 0.997. Additionally, the shear elastic modulus of agarose phantoms has been validated by comparing the results obtained from a rotary rheometer. This approach improves the noncontact elastic measurement capabilities of traditional laser profilometers by only utilizing an airpuff system. Therefore, it has the potential to expand a new application of laser profilometers and be widely utilized for elasticity measurement in both biomedical and industrial applications.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"228 ","pages":"Article 112465"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025001669","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Elasticity is a fundamental property of materials, and recent advancements in wave-based elastography have revealed significant potential for various biomedical and engineering applications, including biomedical imaging, nondestructive evaluation, and structural health monitoring. However, the implementation of elastography requires high-precision imaging systems, which limits its broader applicability. The laser profilometer, a conventional and cost-effective device that operates based on laser triangulation measurement, has been widely utilized in industrial applications for assessing surface profiles. However, its application in elastography has not been previously explored. This study represents, to the best of our knowledge, the first attempt to adapt a laser profilometer for measuring the elasticity of soft materials. A simple and noncontact method for measuring elasticity has been established utilizing the laser profilometer to track the propagation of surface waves on soft materials when excited by an airpuff. The results demonstrate that laser profilometer elastography can track the propagation of surface waves with a broad spectrum following a single airpuff excitation. The temporal separation of wave propagation from the reflected waves enables precise calculation of the propagation velocity of surface waves. The surface wave velocities measured by laser profilometer elastography and laser speckle elastography show strong agreement with a correlation coefficient of 0.997. Additionally, the shear elastic modulus of agarose phantoms has been validated by comparing the results obtained from a rotary rheometer. This approach improves the noncontact elastic measurement capabilities of traditional laser profilometers by only utilizing an airpuff system. Therefore, it has the potential to expand a new application of laser profilometers and be widely utilized for elasticity measurement in both biomedical and industrial applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信