Xiaobo Zhang , Zhengli Zhou , Xiaohui Yang , Lei Huang, Qin Wang, Yi Chen, Kesi Du, Jianqing Peng
{"title":"Inhalable lipid-based nanocarriers covered by polydopamine for effective mucus penetration and pulmonary retention","authors":"Xiaobo Zhang , Zhengli Zhou , Xiaohui Yang , Lei Huang, Qin Wang, Yi Chen, Kesi Du, Jianqing Peng","doi":"10.1016/j.colsurfb.2025.114576","DOIUrl":null,"url":null,"abstract":"<div><div>To overcome the critical challenge in drug inhalation for pulmonary diseases, we innovatively proposed that polydopamine (PDA) as a surface modification material had great potential to improve the mucus permeation and pulmonary retention of inhalable lipid-based nanocarriers. We prepared PDA coated lipid nanoemulsions/solid lipid nanoparticles/liposomes and systematically evaluated their interactions with mucin and pulmonary retention after inhalation. PDA-coated lipid-based nanocarriers exhibited weaker interactions with mucins, higher mucus permeability and cellular uptake by the respiratory epithelium cells compared to PEGylated lipid-based nanocarriers. However, the pulmonary retention advantage of PDA coating was shown in lipid nanoemulsions (< 50 nm) and solid lipid nanoparticles (< 100 nm). Liposomes (∼ 150 nm) with PEGylation possessed higher pulmonary retention than that coated by PDA. It was suggested that PEGylated liposomes were liable to be phagocytosed by alveolar macrophages due to binding with specific antibodies. Overall, this work suggests that PDA as a surface modification material of inhalable lipid-based nanocarriers holds promise for effective mucus penetration and pulmonary retention.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"251 ","pages":"Article 114576"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525000839","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
To overcome the critical challenge in drug inhalation for pulmonary diseases, we innovatively proposed that polydopamine (PDA) as a surface modification material had great potential to improve the mucus permeation and pulmonary retention of inhalable lipid-based nanocarriers. We prepared PDA coated lipid nanoemulsions/solid lipid nanoparticles/liposomes and systematically evaluated their interactions with mucin and pulmonary retention after inhalation. PDA-coated lipid-based nanocarriers exhibited weaker interactions with mucins, higher mucus permeability and cellular uptake by the respiratory epithelium cells compared to PEGylated lipid-based nanocarriers. However, the pulmonary retention advantage of PDA coating was shown in lipid nanoemulsions (< 50 nm) and solid lipid nanoparticles (< 100 nm). Liposomes (∼ 150 nm) with PEGylation possessed higher pulmonary retention than that coated by PDA. It was suggested that PEGylated liposomes were liable to be phagocytosed by alveolar macrophages due to binding with specific antibodies. Overall, this work suggests that PDA as a surface modification material of inhalable lipid-based nanocarriers holds promise for effective mucus penetration and pulmonary retention.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.